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Abstract

A typical genome-wide association study is conducted through a single-phenotype analysis
of the correlation between each phenotype and genotype one at a time. Alternatively, a
multiple-phenotype analysis of the correlation between multiple phenotypes and a genotype
often has many advantages over single-phenotype analysis. For example, statistical power
in the association test may be increased in a multiple-phenotype analysis and thus may
detect small effects that cannot be identified in a single-phenotype analysis. Of the several
multiple-phenotype analytical methods that have been proposed, generalized analysis of
molecular variance for mixed-model analysis (GAMMA) is used to analyze many phenotypes
simultaneously while considering the population structure. This method shows higher accuracy
than the other methods. However, GAMMA has not been widely used because no automated
and user-friendly software is available; this is also the case with most other multiple-phenotype
analysis methods. In addition, the lack of a parallel-processing option, which is essential
in a genome-wide-association-studies analysis, is also prevalent in GAMMA. In this study,
we propose an easy-to-use R package for GAMMA called GAMMA Renew (GAMMAR)
that performs multiple-phenotype analysis using parallel processing. We evaluate GAMMAR
using a recently published yeast dataset to locate trans-regulatory hotspots.
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1. Introduction

Genome-wide association studies (GWAS) have successfully identified many genetic variants
associated with a range of phenotypes and diseases. Unfortunately, it has been reported
that these variants explain only a small portion of phenotypic variations. A typical GWAS
analyzes the correlation between a phenotype and genotype one at a time, an approach
referred to as a single-phenotype analysis. By contrast, multiple-phenotype analysis, in
which multiple phenotypes are analyzed simultaneously, has many advantages over the single-
phenotype analysis. This approach can increase the statistical power of an association test
and detect causal variants that single-phenotype analyses miss because of small effect sizes
[1]. In addition, analyzing multiple phenotypes together may be desirable. In microbiome
data analysis, multiple-phenotype analysis is often preferable as networks between taxa are

219 |

https://orcid.org/0000-0002-2053-5876
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


http://doi.org/10.5391/IJFIS.2020.20.3.219

complex, and determining whether a single nucleotide poly-
morphism (SNP) affects a specific taxon or many taxa jointly
is difficult. In expression quantitative trait loci (eQTL) anal-
ysis, multiple-phenotype analysis may help to locate regula-
tory hotspots, which are variants that regulate thousands of
genes. For these reasons, several multiple-phenotype analytical
methods have been proposed, including generalized analysis
of molecular variance for mixed-model analysis (GAMMA)
[1], singular value decomposition (SVD) [2], multivariate dis-
tance matrix regression (MDMR) [3], probabilistic ANAlysis
of genoMic dAta (PANAMA) [4], and linear mixed-effects
model-expression heterogeneity (LMM-EH) [5].

One of the challenges with GWAS is to correct for the
population-structure effects in association tests. Each popu-
lation carries its own genetic and social history that produces
genetic correlations between individuals and can cause false-
positive associations in an association analysis. Particularly in
multiple-phenotype analysis, the population structure can cause
a major problem as the bias in the test statistics accumulates in
each phenotype [1]. Although some multiple-phenotype analyt-
ical methods correct the bias caused by the population structure,
they are not applicable to more than 10 phenotypes, as the com-
putation time increases quadratically with the number of phe-
notypes. Unlike the others, GAMMA is a multiple-phenotype
method that is applicable to numerous phenotypes when the
population structure is considered.

Despite the advantages of GAMMA, it has not been widely
used. One of the main problems with multiple-phenotype analyt-
ical methods that utilize complex statistical models (including
GAMMA) is that automated software is not provided. The com-
plicated installation of multiple-phenotype analytical methods
and the in-depth computational knowledge required to run them
represent main bottlenecks in their usage. GAMMA requires
multiple running steps. In addition, for each step, GAMMA
uses a different programming language for which users with
backgrounds in biology or genetics must manually install the
required libraries with each version. Another problem with
GAMMA is that it does not provide parallel processing. With
the advent of high-throughput technology, the quantity of ge-
netic data is growing every day, and parallel processing is es-
sential for analyzing this large quantity. Moreover, GAMMA
uses a permutation test to compute the p-value, which is often
used in analyses with complex statistical models, and more than
104 permutations are impossible in genome-wide level analyses
in practice because of the computational cost.

We developed a parallelism-enabled fully automated software

in the widely used R language that we call GAMMA-Renew
(GAMMAR).

2. Related Work

2.1 GWAS and eQTL

High-throughput technologies such as DNA microarray and
next-generation sequencing technology have enabled us to con-
duct GWAS and eQTL analyses. These methods require an
efficient analytical method to examine large datasets.

In genetics, eQTL and GWAS involve observational stud-
ies of a set of genetic variants in different individuals. When
genetic variants are associated with a specific trait or gene ex-
pression, researchers generally focus on the association between
SNPs and traits such as those found in major human genetic
conditions and diseases.

2.2 Population-Structure Effects in GWAS

GWAS has reported the existence of a variety of hidden fac-
tors such as unobserved covariates, genetic associations, and
environmental factors. These confounding factors can lead to
complex dependencies between individuals and result in false
positives. Many researchers have reported that population struc-
tures (one of the leading confounding factors) produce many
false associations in GWAS [1, 6–15].

GWAS examines the association between the minor allele fre-
quency of the SNP and the gene expression or disease condition
to predict the association. However, not only do disease-causing
SNPs produce differences in terms of the frequency of antag-
onistic genes, but SNPs affected by ancestry can also cause
disease [6–15]. This is because the frequency of antagonistic
genes varies from population to population due to the unique
genetic and social histories of these populations.

2.3 GAMMA

A typical GWAS and eQTL analysis examines the correlation
between one phenotype and one genotype at a time. However,
a single-phenotype analysis can miss the unmeasured aspects
of a complex biological network. Analyzing many phenotypes
simultaneously may capture these unmeasured aspects and de-
tect more variations. Although multiple-phenotype methods
aim to detect variations associated with more than one pheno-
type, previous methods do not consider the effects of popu-
lation structures, which can result in a significant number of
false positives. GAMMA, which is an efficient and accurate
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multiple-phenotype analysis method, considers the population
structure and can be applied to numerous phenotypes.

3. Methods

GAMMAR is a fully automated program that automatically sets
all necessary environmental variables when the R package is
downloaded. The GAMMAR package uses the R language and
requires version 3.5.0 or later. In addition to the default R pack-
ages, it also uses external packages such as lmmlite, doParallel,
and foreach. These packages are automatically installed and
configured when the GAMMAR program is installed.

3.1 Overview of the GAMMAR Program

GAMMAR is a fully automated multiple-phenotype analysis R
package that is built on the GAMMA program and uses a linear
mixed model to consider the population structure. It computes
kinship, which contains the correlation of genotypes between
samples, and estimates the variance components of the data by
fitting them into a linear mixed model (details are given in the
following sections). After correcting for the effects of popula-
tion structure in the data, GAMMAR computes pseudo-f statis-
tics to compute the associations between the given phenotypes
and a single genotype. Because the results are pseudo-f statis-
tics, GAMMAR uses permutations to compute the p-values
(Figure 1 shows an overview of the GAMMAR package). It
obtains genotypes, phenotypes, and user options such as the
number of multiprocessors to run in parallel processing; other-
wise, it identifies the number of permutations to perform as the
input. First, it runs the Kinship function to calculate the kinship

Figure 1. Overview of the GAMMAR package.

coefficients. It then runs the varComp function to calculate
the variance components by fitting the data into a linear mixed
model. Finally, it runs the GAMMAR function to return p- and
f -values as the results. N1 indicates the number of processors
with which to run the program, and N2 denotes the number of
permutations used to compute the p-values.

3.2 Population-Structure Correction Model in GAMMA

It is widely known that the population structure confounds the
association analysis in GWAS, thus inducing spurious associ-
ations [1, 6–16]. A typical GWAS uses the following linear
model to test the associations:

yj = Xiβj+ej . (1)

Let n be the number of individuals and m be the number of
genes. In Eq. (1), y is an n ×m matrix, where each column
vector yj is a vector of length n with jth phenotype values, Xi

is a vector of length n containing ith SNP values, βj is a value
that includes the effect of the ith SNP on the jth phenotype,
and ej is a vector of length n with independent and identically
distributed (i.i.d.) residual errors of the jth phenotype. Here,
ej ∼ N(0, σ2

gjI), where I is an n by n identity matrix with un-
known magnitude σ2

ej . Under the assumption of a linear model,
each phenotype follows a multivariate normal distribution with
mean and variance given as yj ∼ N(Xiβj ,Σj).

Recently, the linear mixed model has emerged as a powerful
tool in GWAS that considers the population structure in the
association test as follows:

yj = Xiβj + uj + ej , (2)

where uj is a vector of length n that contains the effects of the
population structure of the jth phenotype (uj ∼ N(0, σ2

gjK)),
K is the kinship matrix that encodes the relatedness between the
individuals, and σgj

2 is the variance of the phenotype accounted
for by the genetic variation under the linear mixed model yj ∼
N(Xiβj ,Σj), where Σj = σ2

gjK + σ2
ejI .

GAMMA computes variance components for each phenotype
and uses median values of σ̂gj and σ̂ej to compute Σ̂ = σ̂2

gjK+

σ̂2
ejI . The square root of Σ̂ is used to transform the genotypes

and phenotypes (Σ̂yj ∼ N(Σ̂−1/2Xiβj , σ2I)) to make the
data i.i.d. (Figure 2).
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Figure 2. Population stratification correction. The left graph shows
when the data containing a population structure affects variance Σ̂
The data are i.i.d. after the genotypic and phenotypic values are
transformed using Σ̂−1/2.

3.3 GAMMAR Implementation

GAMMAR was written in R language version 3.5.0 and is
offered under the GNU Affero General Public License ver-
sion 3 (AGPL-3.0; https://www.gnu.org/licenses/why-affero-
gpl.html).

3.3.1 Variance components estimation

Variance components estimation involves implementing the lin-
ear mixed model as given in Eq. (2) and computing the variance
components of the data (σg and σe). After estimating the vari-
ance components by fitting the data into the linear mixed model,
we use the variance components to correct for the effects of pop-
ulation structure by transforming the genotypes and phenotypes
as previously described.

3.3.2 Parallel processing

GAMMA performs a permutation test to compute p-values,
which consumes considerable time. To reduce the running time,
GAMMA uses an adaptive permutation. However, this still
consumes considerable time, and performing permutations of
more than 104 at the genome-wide level in practice is impossi-
ble, even when running on a high-performance server. In other
words, GAMMA cannot provide p-values of less than 10−4,
which is sufficient for GWAS considering the fact that standard
GWAS requires p-values of less than 10−8. GAMMAR allows
multiprocessing in a user-friendly manner that does not require
that the data be divided into small windows for distribution into
clusters. Users may specify the number of processes to use for
parallel processing.

Figure 3. Performance comparison of GAMMA and GAMMAR in
terms of computational time.

3.3.3 Genomic control

Genomic control is a commonly used statistical method to
correct the confounding effects of population stratification in
genetic association studies. We provide this as a function in
GAMMAR.

4. Results

4.1 Performance Analysis

We evaluated the performance of GAMMAR by comparing
it with GAMMA in analyzing a previously generated yeast
dataset that contains 1, 012 segregants with 5, 720 genes and
42, 052 SNPs [17]. Figure 3 shows that GAMMAR reduced the
execution time significantly, whereas GAMMA required much
more time to configure the environments and to run the multiple-
step burden. Approximately 45 days were required to analyze
the data, not including the additional time required to set up
the environment and pre- and post-process the data for running
and transferring the data in each step. Thus, when running the
programs on the same system, GAMMAR was approximately
five and more than 10 times faster than GAMMA when using
10 and 20 processes, respectively. The result was based on 104

permutations.

4.2 GAMMAR Analysis using the Yeast Dataset

The genome of eukaryotes was first decoded in budding yeast,
which is a single-celled organism [18]. For many years, yeast
has been widely studied in genetics and physiology as a eukary-
ote model system, as it has 23% homologous genes to humans
and a short lifecycle. It also is a well-annotated genome [19].
We evaluated GAMMAR with a yeast dataset to identify trans-
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Table 1. Regulatory hotspot identification of the yeast dataset

eQTL Hotspot Number of
eQTLs

Number of
eGenes

Putative regulators

III:150000* 9 5 RER1, PMP1, SLM5, NPP1, RHB1

III:190000* 14 8 PHO87, MATALPHA1, MATALPHA2, POF1, RPS14A, MAK31, SNT1,
RRP43

XII:650000* 31 12 LCB5, NDL1, CCC1, AAT2, TEN1, YPS13 TIS11, MSS51, TMA7, RED1,
HSP60, YPT6

XIV:360000 28 17 YSF3, SRV2, ASI3, FPR1, EAF7, NRK1, TOM22, FYV6, HRB1, CPT1,
KRE33, ELA1, WHI3, PGA1, MPP6, TCB2 POL1

XIV:440000* 14 4 TOP2, TCB2, YPT53, RHO2

XIV:470000* 21 13 TPM1, SAL1, NSG2, EOS1, YAF9, SNN1, INP52, GA2, RIO2, KSH1,
TOM22, NIS1, RPL9B

Putative regulators identified by previous studies are denoted in boldface; * indicates a previously discovered hotspot.

Figure 4. Regulatory hotspots in yeast. The x and y axes correspond
to the SNP positions and GAMMAR p-value, respectively.

eQTL hotspots [17]. After adjusting for batch effects by using
the ComBat method with the growth covariate [20], we per-
formed GAMMAR analysis using expression levels of 5,720
genes with 42,052 SNPs. A total of 692 SNPs was determined
based on the GAMMAR p-value< 5 × 10−5 (Figure 2). We
next divided the whole yeast genome into 603 20-kb bins, and
then SNPs with the smallest GAMMAR p-values were selected
in each bin for comparison with the previous yeast eQTL studies
[21, 22]. We determined that 117 trans-eQTLs had 59 eGenes
on three chromosomes. In eQTL studies, genes with cis-acting
SNP effects are referred to as eGenes [23]. Information on these
eGenes was obtained from the original yeast study [1]. Collec-
tively, we defined the six bins as trans-regulatory hotspots and
59 eGenes as putative regulators. Of the 59 total eGenes, nine
had been previously identified [21, 22, 24] (Table 1). In four
previous studies, MATing type protein ALPHA 1; III:190000
(MATALPHA1) was reported to be a casual regulator [21, 25–
27], and Killer toxin REsistant 33; XIV:360000 (KRE33) was

recently identified as a putative causal regulator [24].

5. Conclusion

Although multiple-phenotype analysis is advantageous over
single-phenotype analysis in many respects, it has not been
widely used because of certain inconveniences when applying
it. GAMMA is a representative multiple-phenotype analytical
method that is applicable to high-dimensional data and can
correct for population-structure effects in GWAS and eQTL
studies. GAMMA has flaws. For example, it requires that
the necessary libraries for executing python and R programs
be manually installed along with the required older versions.
Another problem with the usage of GAMMA is that it lacks
a parallel-processing option. It uses a permutation test for
computing the p values for which parallel processing is essential.
Thus, even when using high-performance servers, GAMMA
cannot run more than 104 permutations in practice.

In this study, we provided a fully automated and easy-to-use
R package called GAMMAR to solve various inherent problems
with GAMMA. When the GAMMAR package is installed, all
of the necessary environments are automatically installed and
configured. In addition, GAMMAR allows parallel processing,
which significantly increases the allowed number of permuta-
tions to reach the standard GWAS threshold of 10−8. With the
advent of data collection technologies, the amount of genome
data has been growing daily, and many researchers have fo-
cused on multiple-phenotype analysis. We believe GAMMAR
provides an efficient and user-friendly means of conducting
multiple-phenotype analyses in the new era.

223 | Gi Ju Lee, Sung Min Park, Junghyun Jung, and Jong Wha J. Joo



http://doi.org/10.5391/IJFIS.2020.20.3.219

Conflict of Interest

No potential conflict of interest relevant to this article was
reported.

Acknowledgements

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future Plan-
ning (No. 2017R1C1B5017497) and by the R&D program
for Advanced Integrated-Intelligence for Identification (AIID)
through the NRF funded by the Ministry of Science and ICT
(No. 2018M3E3A1057288).

References

[1] J. W. J. Joo, E. Y. Kang, E. Org, N. Furlotte, B. Parks,
F. Hormozdiari, A. J. Lusis, and E. Eskin, “Efficient and
accurate multiple-phenotype regression method for high
dimensional data considering population structure,” Ge-
netics, vol. 204, no. 4, pp. 1379-1390, 2016. https://doi.
org/10.1534/genetics.116.189712

[2] O. Alter, P. O. Brown, and D. Botstein, “Singular value de-
composition for genome-wide expression data processing
and modeling,” Proceedings of the National Academy
of Sciences, vol. 97, no. 18, pp. 10101-10106, 2000.
https://doi.org/10.1073/pnas.97.18.10101

[3] N. J. Schork and M. A. Zapala, “Statistical proper-
ties of multivariate distance matrix regression for high-
dimensional data analysis,” Frontiers in Genetics, vol. 3,
article no. 190, 2012. https://doi.org/10.3389/fgene.2012.
00190

[4] N. Fusi, O. Stegle, and N. D. Lawrence, “Joint modelling
of confounding factors and prominent genetic regulators
provides increased accuracy in genetical genomics stud-
ies,” PLoS Computational Biology, vol. 8, no. 1, article
no. e1002330, 2012. https://doi.org/10.1371/journal.pcbi.
1002330

[5] J. Listgarten, C. Kadie, E. E. Schadt, and D. Heckerman,
“Correction for hidden confounders in the genetic analysis
of gene expression,” Proceedings of the National Academy
of Sciences, vol. 107, no. 38, pp. 16465-16470, 2010.
https://doi.org/10.1073/pnas.1002425107

[6] R. A. Kittles, W. Chen, R. K. Panguluri, C. Ahaghotu,
A. Jackson, C. A., Adebamowo, et al., “CYP3A4-V
and prostate cancer in African Americans: causal or
confounding association because of population stratifi-
cation?,” Human Genetics, vol. 110, no. 6, pp. 553-560,
2002. https://doi.org/10.1007/s00439-002-0731-5

[7] M. L. Freedman, D. Reich, K. L. Penney, G. J. McDonald,
A. A. Mignault, N. Patterson, et al., “Assessing the impact
of population stratification on genetic association stud-
ies,” Nature Genetics, vol. 36, no. 4, pp. 388-393, 2004.
https://doi.org/10.1038/ng1333

[8] J. Marchini, L. R. Cardon, M. S. Phillips, and P. Donnelly,
“The effects of human population structure on large genetic
association studies,” Nature Genetics, vol. 36, no. 5, pp.
512-517, 2004. https://doi.org/10.1038/ng1337

[9] C. D. Campbell, E. L. Ogburn, K. L. Lunetta, H. N. Lyon,
M. L. Freedman, C. Groop, D. Altshuler, K. G. Ardlie,
and J. N. Hirschhorn, “Demonstrating stratification in a
European American population,” Nature Genetics, vol. 37,
no. 8, pp. 868-872, 2005. https://doi.org/10.1038/ng1607

[10] A. Helgason, B. Yngvadottir, B. Hrafnkelsson, J. Gulcher,
and K. Stefansson, “An Icelandic example of the impact
of population structure on association studies,” Nature
Genetics, vol. 37, no. 1, pp. 90-95, 2005. https://doi.org/
10.1038/ng1492

[11] A. P. Reiner, E. Ziv, D. L. Lind, C. M. Nievergelt, N. J.
Schork, S. R. Cummings, et al., “Population structure,
admixture, and aging-related phenotypes in African Amer-
ican adults: the Cardiovascular Health Study,” The Ameri-
can Journal of Human Genetics, vol. 76, no. 3, pp. 463-
477, 2005. https://doi.org/10.1086/428654

[12] B. F. Voight and J. K. Pritchard, “Confounding from
cryptic relatedness in case-control association studies,”
PLoS Genetics, vol. 1, no. 3, article no. e32, 2005.
https://doi.org/10.1371/journal.pgen.0010032

[13] M. Berger, H. H. Stassen, K. Kohler, V. Krane, D. Monks,
C. Wanner, et al., “Hidden population substructures in
an apparently homogeneous population bias association
studies,” European Journal of Human Genetics, vol. 14,
no. 2, pp. 236-244, 2006. https://doi.org/10.1038/sj.ejhg.
5201546

www.ijfis.org A Fully Automated Parallel-Processing R Package for High-Dimensional Multiple-Phenotype Analysis Considering Population Structure | 224

https://doi.org/10.1534/genetics.116.189712
https://doi.org/10.1534/genetics.116.189712
https://doi.org/10.1073/pnas.97.18.10101
https://doi.org/10.3389/fgene.2012.00190
https://doi.org/10.3389/fgene.2012.00190
https://doi.org/10.1371/journal.pcbi.1002330
https://doi.org/10.1371/journal.pcbi.1002330
https://doi.org/10.1073/pnas.1002425107
https://doi.org/10.1007/s00439-002-0731-5
https://doi.org/10.1038/ng1333
https://doi.org/10.1038/ng1337
https://doi.org/10.1038/ng1607
https://doi.org/10.1038/ng1492
https://doi.org/10.1038/ng1492
https://doi.org/10.1086/428654
https://doi.org/10.1371/journal.pgen.0010032
https://doi.org/10.1038/sj.ejhg.5201546
https://doi.org/10.1038/sj.ejhg.5201546


International Journal of Fuzzy Logic and Intelligent Systems, vol. 20, no. 3, September 2020

[14] M. F. Seldin, R. Shigeta, P. Villoslada, C. Selmi, J.
Tuomilehto, G. Silva, J. W. Belmont, L. Klareskog,
and P. K. Gregersen, “European population substruc-
ture: clustering of northern and southern populations,”
PLoS Genetics, vol. 2, no. 9, article no. e143, 2006.
https://doi.org/10.1371/journal.pgen.0020143

[15] M. Foll and O. Gaggiotti, “Identifying the environmen-
tal factors that determine the genetic structure of pop-
ulations,” Genetics, vol. 174, no. 2, pp. 875-891, 2006.
https://doi.org/10.1534/genetics.106.059451

[16] J. Flint and E. Eskin, “Genome-wide association studies
in mice,” Nature Reviews Genetics, vol. 13, no. 11, pp.
807-817, 2012. https://doi.org/10.1038/nrg3335

[17] F. W. Albert, J. S. Bloom, J. Siegel, L. Day, and L.
Kruglyak, “Genetics of trans-regulatory variation in gene
expression,” Elife, vol. 7, article. e35471, 2018. https:
//doi.org/10.7554/eLife.35471

[18] A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B.
Dujon, H. Feldmann, et al., “Life with 6000 genes,” Sci-
ence, vol. 274, no. 5287, pp. 546-567, 1996. https://doi.
org/10.1126/science.274.5287.546

[19] D. Botstein, S. A. Chervitz, and M. Cherry, “Yeast
as a model organism,” Science, vol. 277, no. 5330,
pp. 1259-1260, 1997. https://doi.org/10.1126/science.277.
5330.1259

[20] W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch
effects in microarray expression data using empirical
Bayes methods,” Biostatistics, vol. 8, no. 1, pp. 118-127,
2007. https://doi.org/10.1093/biostatistics/kxj037

[21] R. E. Curtis, S. Kim, J. L. Woolford Jr, W. Xu, and E.
P. Xing, “Structured association analysis leads to insight
into Saccharomyces cerevisiaegene regulation by finding
multiple contributing eQTL hotspots associated with func-
tional gene modules,” BMC Genomics, vol. 14, article no.
196, 2013. https://doi.org/10.1186/1471-2164-14-196

[22] L, Lin, Q. Chen, J. P. Hirsch, S. Yoo, K. Yeung, R. E. Bum-
garner, Z. Tu, E. E. Schadt, and J. Zhu, “Temporal genetic
association and temporal genetic causality methods for dis-
secting complex networks,” Nature Communications, vol.
9, article no. 3980, 2018. https://doi.org/10.1038/s41467-
018-06203-3

[23] J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo,
S. Shad, et al., “The genotype-tissue expression (GTEx)
project,” Nature Genetics, vol. 45, no. 6, pp. 580-585,
2013. https://doi.org/10.1038/ng.2653

[24] E. R. Jerison, S. Kryazhimskiy, J. K. Mitchell, J. S. Bloom,
L. Kruglyak, and M. M. Desai, “Genetic variation in adapt-
ability and pleiotropy in budding yeast,” Elife, vol. 6, arti-
cle no. e27167, 2017. https://doi.org/10.7554/eLife.27167

[25] G. Yvert, R. B. Brem, J. Whittle, J. M. Akey, E. Foss, E. N.
Smith, R. Mackelprang, and L. Kruglyak, “Trans-acting
regulatory variation in Saccharomyces cerevisiae and the
role of transcription factors,” Nature Genetics, vol. 35, pp.
57-64, 2003. https://doi.org/10.1038/ng1222

[26] J. Zhu, B. Zhang, E. N. Smith, B. Drees, R. B. Brem, L.
Kruglyak, R. E. Bumgarner, and E. E. Schadt, “Integrating
large-scale functional genomic data to dissect the complex-
ity of yeast regulatory networks,” Nature Genetics, vol. 40,
no. 7, pp. 854-861, 2008. https://doi.org/10.1038/ng.167

[27] S. I. Lee, A. M. Dudley, D. Drubin, P. A. Silver, N. J.
Krogan, D. Pe’er, and D. Koller, “Learning a prior on
regulatory potential from eQTL data,” PLoS Genetics,
vol. 5, no. 1, article no. e1000358, 2009. https://doi.org/
10.1371/journal.pgen.1000358

Gi Ju Lee received the M.S. degrees from
Dongguk University, Seoul, Korea, in 2019.
Currently, he has been under the Ph.D. de-
gree candidate at the Department of Com-
puter Science and Engineering, Dongguk
University, since 2019. His research areas

include developing bioinformatics tools, genome privacy and
security .
E-mail: beartange3@gmail.com

Sung-min Park received the B.S. degrees
from Dongguk University, Seoul, Korea,
in 2019. Currently, he has been under the
M.S. degree candidate at the Department
of Computer Science and Engineering,
Dongguk University, since 2019. His re-

search areas include bioinformatics and life science.
E-mail: 9904trs@naver.com

225 | Gi Ju Lee, Sung Min Park, Junghyun Jung, and Jong Wha J. Joo

https://doi.org/10.1371/journal.pgen.0020143
https://doi.org/10.1534/genetics.106.059451
https://doi.org/10.1038/nrg3335
https://doi.org/10.7554/eLife.35471
https://doi.org/10.7554/eLife.35471
https://doi.org/10.1126/science.274.5287.546
https://doi.org/10.1126/science.274.5287.546
https://doi.org/10.1126/science.277.5330.1259
https://doi.org/10.1126/science.277.5330.1259
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1186/1471-2164-14-196
https://doi.org/10.1038/s41467-018-06203-3
https://doi.org/10.1038/s41467-018-06203-3
https://doi.org/10.1038/ng.2653
https://doi.org/10.7554/eLife.27167
https://doi.org/10.1038/ng1222
https://doi.org/10.1038/ng.167
https://doi.org/10.1371/journal.pgen.1000358
https://doi.org/10.1371/journal.pgen.1000358


http://doi.org/10.5391/IJFIS.2020.20.3.219

Junghyun Jung received his Ph.D.in 2020
from Dongguk University, Seoul, Korea.
Currently, he is a postdoctoral scholar
at the Department of Clinical Pharmacy,
USC School of Pharmacy, University of
Southern California, since 2020. His re-

search areas include developing bioinformatics tools and ana-
lyzing functional genomic data related to the immune system.
E-mail: junghyunjj219@gmail.com

Jong Wha J. Joo received the B.S. de-
gree in computer science and engineering
from Seoul National University, Seoul,
Korea, in 2005, the M.S. degree in com-
puter science from Brown University, Prov-
idence, RI, USA, in 2007, and the Ph.D.

degree in bioinformatics from the University of California, Los
Angeles, CA, USA, in 2016. She is currently an Assistant
Professor with the Department of Computer Science and En-
gineering, Dongguk University, Seoul. Her research interests
include developing efficient computational methodologies and
algorithms for genome-wide association studies and expression
quantitative trait loci studies.
E-mail: jwjjoo@dongguk.edu

www.ijfis.org A Fully Automated Parallel-Processing R Package for High-Dimensional Multiple-Phenotype Analysis Considering Population Structure | 226


	Introduction
	Related Work
	GWAS and eQTL
	Population-Structure Effects in GWAS
	GAMMA

	Methods
	Overview of the GAMMAR Program
	Population-Structure Correction Model in GAMMA
	GAMMAR Implementation
	Variance components estimation
	Parallel processing
	Genomic control


	Results
	Performance Analysis
	GAMMAR Analysis using the Yeast Dataset

	Conclusion

