
Mol Cell Toxicol (2017) 13:239-249
DOI 10.1007/s13273-017-0026-5

ORIGINAL PAPER

Abstract Bisphenol A (BPA) is an endocrine-dis-
rupting chemical that is related to many diseases, in-
cluding heart attacks and diabetes. Recently, several 
studies have reported the carcinogenic potential of BPA  
in rodents, yet carcinogenic effects of BPA in humans 
remains unclear. In this study, meta-analysis was app-
lied to independent GEO datasets, based on 158 Affy-
metrix microarrays and 8 Illumina RNA-Seqs. Addi-
tionally, we performed functional enrichment analysis, 
disease similarity analysis based on Disease Ontology 

(DO) analysis, and network analysis. 1,993 (1,457 up-, 
536 down-regulated) differentially expressed genes 

(DEGs) were identified from five GEO datasets by ad-
justing for batch effects. Using disease similarity anal-
ysis, we demonstrated that results of DO analysis of the 
top 20 diseases were highly related to breast cancer. 
Moreover, we showed that the DEGs were significantly  
enriched in gene expression datasets on human breast 
cancer tissue via gene set enrichment analysis. By per-
forming network analysis, we finally identified 85 (68 
up- and 17 down-regulated) DEGs, and some of their 
expression levels were validated by quantitative PCR. 
The identified DEGs were regarded as genetic markers  
for carcinogenic risks, indicating that BPA may be a 
potential carcinogenic chemical contributing to the 
cause of breast cancer in humans.

Keywords: Bisphenol A, Carcinogenic risks assessment, 
Toxicogenomics, Meta-analysis, Network analysis

Introduction

For over 50 years, Bisphenol A (BPA) has been used 
as a raw material to make polycarbonate plastics for 
producing compact discs, auto parts, baby feeding 
bottles, plastic containers, coating materials for glass 
lenses, and shock absorbers1,2. It has also been used to 
synthesize epoxy resins that make linings of canned 
food, food packaging materials, and dental resins3. Be-
cause BPA released from polycarbonate plastics and 
epoxy resins can mimic estrogen hormones in vivo, 
safety issues have emerged4,5. In vitro, in vivo, and ep-
idemiologic studies of BPA show that it is related to 
several diseases and adverse effects, including heart 
attack and coronary heart disease6, cardiovascular dis-
ease7, diabetes8, arterial disease9, and obesity10. Sever-
al researchers reported that prenatal exposure to BPA 
causes potential carcinogenic risks in rodent mammary 
tissues11-13.

These studies provided valuable insight into the risks 
of BPA in human health; however, the carcinogenic  
risks of BPA in humans remains unclear14,15. Since 
2007, diverse rat and mice in vivo studies have sug-
gested that there is a significant increased cancer in-
cidence rate in the female mammary gland and an in-
creased number of prostatic intraepithelial neoplasms 
in male prostate organ16,17. In order to understand the 
mechanisms of BPA in carcinogenesis, a hybridization- 
based microarray technique can be a very powerful 
tool in the detection of the alteration of gene expres-
sion patterns18,19. The development of cDNA sequence- 
based approaches, such as RNA sequencing (RNA-seq),  
additionally allows the quantification of transcriptomes, 
as well as the detection of unannotated transcripts and 
isoforms20,21. Public microarray and RNA-Seq data-
bases such as ArrayTrack, NCBI GEO, SRA, ArrayEx-
press at EBI, and the Stanford Microarray database are 
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available for study. The microarray- and RNA-Seq-
based toxicogenomics data have also been continuous-
ly accumulating at public repositories and are currently 
available, providing useful information for scientific 
research and discovery22. The rapid growth of a variety 
of public databases and diverse bioinformatics tools 
make it possible to integrate heterogeneous datasets in 
different studies and platforms, as well as to identify 
underlying trends, which were previously very hard to 
determine from a single study.

In this study, a meta-analysis of the combined gene 
expression datasets containing data on the effects of 
BPA, obtained from the NCBI GEO, was performed. 
After pre-processing, we adjusted differences that can 
be considered as “batch effects” in each of the data-
sets. Batch effects are induced by time- and place- 
dependent, non-biological experimental variations, and 
are detected during combining multiple datasets23,24. In 
meta-analysis, adjusting for batch effects is an inevita-
ble process in order to conduct an appropriate analysis 
free of non-biological variations, as heterogeneous 
multiple datasets are combined in order to increase  
statistical power during the process. The Rank Product  
method was performed, which offers the “rank” of 
genes by using geometric means in replicate microar-
ray datasets25. The Rank product is a simple and pow-
erful method to process heterogeneous datasets.

Herein, we conducted a meta-analysis on the carcino-
genic risk assessment of BPA by combining microar-
ray and RNA-seq gene expression datasets using the 
Rank Product method. The aims of this study were 1) 
to combine microarray and RNA-Seq data by adjusting 
for batch effects, 2) to identify robust, differentially 
expressed genes (DEGs) using the Rank Product meth-
od in the combined datasets, 3) to conduct enrichment 
analysis using Gene Ontology (GO), KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathways, and 
disease similarity heatmaps based on Disease Ontol-
ogy (DO), 4) to confirm correlations between our me-
ta-analysis of DEGs and gene expression datasets ob-
tained from cancer tissues using the Gene Set Enrich-
ment Analysis (GSEA), and 5) to identify key DEGs 
through network analysis in order to demonstrate the 
carcinogenic risk of BPA.

Results

Dataset collection and preprocessing of BPA related 
toxicogenomic data

To identify consistently regulated genes upon BPA 
exposure across different studies, the GEO database 
was queried for expression studies of microarray and 

Table 1. Toxicogenomics datasets for meta-analysis.

GEO series 
ID GEO platform ID Cell line Dose of 

BPA
No. of arrays  

(Control : Treatment)
BPA-treatment 

time

GSE2688450

GPL 570
(Affymetrix Human Genome 

U133 Plus 2.0 Array)

MCF-10F
(Normal-like human 

breast epithelial)

1 nM, 
10 nM

6
(2 : 4)

Continuously two 
weeks, adding fresh 

media every day

GSE3215850
MCF-10F

(Normal-like human 
breast epithelial)

1 nM, 
10 nM

8
(2 : 6)

Continuously two 
weeks, adding fresh 

media every day

GSE1762451
Human Ishikawa

(Endometrial 
adenocarcinoma)

1 pM, 
100 pM, 
10 nM, 
1 μM

20
(4 : 16)   8 h

20
(4 : 16) 24 h

20
(4 : 16) 48 h

GSE5070529
MCF-7

(Mammary gland/
Breast cancer)

1.95 pM
~50 μM

84
(6 : 78) 48 h

GSE3823452 GPL11154
(Illumina HiSeq 2000)

T47D
(Mammary gland/

Breast cancer)
100 nM 4

(2 : 2)   8 h

ECC1
(Endometrium 

adenocarcinoma)
100 nM 4

(2 : 2)   8 h
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RNA-Seq. The collection of datasets was exhibited 
in 5 GSEs (GEO Series), 2 GPL (GEO Platform) of 
162 GSMs (GEO Samples) (Table 1). The 4 GSEs 

(GSE26884, GSE32158, GSE17624, and GSE50705) 
were from the Affymetrix Human Genome U133 Plus 
2.0 Array (GPL 570) and 1 GSE (GSE38234) was from 
the Illumina HiSeq 2000 (GPL11154). The expression 
profiling studies contained 140 samples of BPA treat-
ment and 26 control samples (Table 1). The multiple 
datasets were combined to perform a meta-analysis. 
To overcome platform differences of microarray and 
RNA-Seq data, a value of RNA-Seq RPKM was trans-
formed using the Mooney et al.26 method. The de-
tails of this method are described in the Materials and 
Methods section. Although the RNA-Seq data were 
transformed to integrate microarray data, we had a 
study-dependent variation called batch effects, which 
are regarded as non-biological deviations that occur 
when combining multiple datasets to conduct meta- 
analyses (Figure 1).

Meta-analysis for identification of consistently 
regulated genes

All of the adjusted gene expression datasets integrat-
ing 5 GSEs were analyzed to identify DEGs in repli-
cate microarray experiments. Even after non-biologi-
cal batch effects were adjusted for in 5 heterogeneous 
datasets, the biological differences still remained, such 
as differences in cell lines based on the origin of tis-
sues and platform types. In order to identify genes that 
are only affected by BPA across the studies, we used 
the Rank Product algorithm, which is one of the most 
robust methods to conduct meta-analysis for identifi-
cation of consistently regulated genes. Five different 
origins of tissues and two platform types were used to 
conduct the meta-analysis (Figure 1). The number of 
combined datasets of microarray and RNA-Seq data 
sorted by unique Entrez ID was counted to be 17,639 
genes in total, and 1,993 (1,457 up- and 536 down-reg-
ulation) genes were identified (Figures 2B, S1B and 
Table S1) as relevant. Even with the higher power of 

Figure 1. A flow chart of the meta-analysis process. The microarray and RNA-seq datasets were retrieved from NCBI GEO. All 
procedures were performed with R language using Bioconductor open-source packages and Cytoscape. *indicates the number of  
arrays (Control: Treatment). Ŧ indicates that 0.25 was added to the value to avoid the occurrence of -∞ singularity at RPKM = 0.
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the meta-analysis, more genes were identified in com-
bined datasets compared with each single study (Fig-
ures 2A and S1A). Notably, the Venn diagram showed 
that some genes were identified only in the meta-anal-
ysis (Figures 2B and S1B).

Functional enrichment analysis

To obtain insights into the biological interpretation of 
DEGs derived from meta-analysis, the selected up- 
and down-regulated DEGs were assigned to GO and 
KEGG pathway functional enrichment analysis. The 
GO and KEGG pathways provide a descriptive frame-
work and functional annotation to the understanding 
of the biological roles of the DEGs27. The up-regulated 
genes were significantly over-represented in the cell 
cycle, nuclear division, and chromosome segregation, 
whereas the down-regulated genes were significantly 

enriched in multicellular organism processes, cell dif-
ferentiation, and cell migration section (P<0.01) (Fig-
ure S1C). The over-represented KEGG pathway terms 
were associated with cell cycle, DNA replication, and 
several repair pathways in up-regulated genes, while 
retinol or drug metabolism pathways were found to be 
enriched in down-regulated genes (P<0.05) (Figure 
2C).

Identifying connection of cancer and BPA

Generally, deregulation of the cell cycle is the basis of 
abnormal cell proliferation characterized by cancer28. 
The fact that the cell cycle, DNA replication, and sev-
eral DNA repair pathways are significantly related to 
BPA treatment (Figures 2C and S1C) suggested that 
BPA exposure may be involved in tumorigenesis. To 
confirm whether our DEGs derived from meta-analy-

Figure 2. The results of meta-analysis and functional enrichment analysis. (A) A plot showing the statistical power of meta-analysis 
based on number of up-regulated genes and the corresponding pfp. Dotted lines indicate the threshold of DEGs. (B) A Venn diagram 
showing the overlap between up-regulated genes identified by at least one study and the meta-analysis (pfp<0.05). (C) Enrichment 
analysis of the KEGG pathway using up-regulated DEGs (P<0.05). Dotted lines indicate the threshold of DEGs. (D) Enrichment 
analysis of the KEGG pathway using down-regulated DEGs (P<0.05).

(A) (B)

(C)
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ses were associated with various cancers, GSEA using 
cancer datasets was performed. Our gene sets of DEGs 
were applied to gene expression datasets from human  
breast cancer tissues. The GSEA results showed that 
up- and down-regulated DEGs were significantly en-
riched in two independent microarray datasets for 
human breast cancer tissues. Additionally, our DEGs 
were also enriched in gene expression datasets derived 

from human endometrial cancer tissues (Figure 3A).
Along with the GO and KEGG pathways, Disease 

ontology (DO) enrichment analysis was conducted to 
identify particular diseases related to DEGs under BPA  
exposure. Disease similarity analysis was also perform-
ed using the top 20 most significant diseases based on 
DO enrichment analysis. This provides a guideway to 
establish disease-disease relationships in order to fur-

Figure 3. The correlation between BPA and cancer. (A) A GSEA plot showing that the DEGs from meta-analysis were significantly 
enriched in breast (GSE17907 and GSE17907) and endometrial (GSE17025) cancer datasets derived from human tissue. (B) The 
heatmap for disease similarity based on DO enrichment analysis of the BPA-related DEGs. The top 20 diseases of DO enrichment 
analysis were represented in each column and row of this heatmap. The gold color indicates greater similarities among the diseases. 
Column annotation of red and green colors also indicate cancer and non-cancer diseases, respectively. Using hierarchical clustering, 
the subgroups based on high similarity of DO terms are shown in the pink square.

(A)

(B)
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ther elucidate the similarities among diseases, as well 
as to highlight variables of subgroups of diseases by 
identifying gene function in the perspective of a dis-
ease. The results of disease similarity analysis were 
shown as a similarity heatmap based on the top 20 dis-
eases (Figure 3B). Among top 20 DO terms, 90% (18 
of 20 terms) were associated with cancer. Notably, the 
terms of 5 eye-related and 4 breast-related cancers that 
contained 110 (80 up- and 30 down-regulated) DEGs 
were clustered by showing a high similarity via hierar-
chical clustering.

PPI network analysis and qPCR validation

Using the 110 DEGs derived from the disease similar-
ity analysis, a PPI network was constructed to under-
stand the interactions and molecular mechanisms of 
the DEGs. The network contained the 85 (68 up-, 17 
down-regulated) proteins, including 12 transcription 
factors (TFs) which interact with one another (Figure 
4A and Table S2). Using GO enrichment analysis, 3 
main terms that overlapped with 5 TFs and 2 proteins 
were significantly related to cell cycle (P<10-23), re-
sponse to chemical stimulus (P<10-20), and regulation 
of transcription (P<10-6). BRCA1 (BRCA1, DNA 
repair associated, Degree = 40), TP53 (tumor protein 
p53, Degree = 35), MYC (MYC proto-oncogene, De-
gree = 28), and SMAD3 (SMAD family member 3, 
Degree = 14) were identified in the core of the protein 
interaction network (Figure S2). In order to confirm 
that the genes are actually up- or down-regulated as 
predicted in the study, we performed a qPCR analy-
sis on 5 genes (BRCA1, BRCA2, TP53, TWIST1, and 
SMAD3) using a normal human mammary epithelial 
cell line, MCF-10A. The validation results showed that 
the qPCR results were consistent with our results of 
meta-analysis and PPI network (Figure 4B).

Discussion

Many products made of BPA have been widely used 
for many decades. It has been widely reported that 
BPA can mimic estrogen in mammals and create var-
ious problem in vivo4. Although BPA does not exert 
strong estrogenic effects when compared to other en-
docrine-disrupting chemicals29,30, it has been reported 
to be a potential carcinogen in mice15,16. Therefore, it 
has become a matter of interest to understand the un-
derlying carcinogenic effects of BPA on humans. Here 
we demonstrate that BPA may indeed be carcinogenic 
in humans as shown in the enrichment analysis of the 
KEGG pathway, GO, and disease similarity heatmaps 
based on DO, using meta-analyses of heterogeneous 

microarray sets.
The meta-analysis for risk assessment combining 

several toxicogenomics datasets archived by public 
databases has been useful approaches in the identifi-
cation of the underlying mechanisms of toxic chemi-
cals31. The 5 different GSEs consisting of 1 normal cell 
line (MCF-10F) and 4 different cancer cell lines (Ishi-
kawa, MCF-7, T47D, ECC1), divided into two differ-
ent platforms, were used to analyze the potential car-
cinogenic risk of BPA in humans. The Illumina RNA-
Seq and Affymetrix microarray platforms had a high 
correlation32 and it has been reported that the Combat 
function for adjusting for batch effects performed bet-
ter than other methods33. Our combined datasets were 
highly heterogeneous due to non-biological effects, so 
batch effects were adjusted for using the Combat func-
tion, and a robust RP algorithm was utilized to over-
come these heterogeneities.

Our results indicated that up- and down-regulated 
DEGs were significantly enriched in human breast 
cancer tissues, suggesting that BPA may have carcino-
genic effects on humans (Figure 3A). Via PPI network 
analysis, SMAD3, a putative key regulator, was iden-
tified (Figures 4 and S2). Previous research has shown  
that down-regulation of SMAD3 using RNAi is re-
sponsible for tumorigenesis and metastasis in the hu-
man breast cancer cell line34. Additionally, PPARG is 
directly connected with SMAD3 (Figures 4 and S2A), 
and is a therapeutic target of breast cancer, as antago-
nist chemicals to suppress cell proliferation and motili-
ty can be used35.

Our study has some limitations. First, BPA may not 
dose-dependently decrease or increase mRNA expres-
sion levels. Second, the expression of mRNA levels 
may have different expression patterns in different cell 
lines. Third, although qPCR was performed to validate 
the expression levels under BPA exposure, further re-
search is necessary. Despite these limitations, our meta- 
analysis, which combined different studies adjusting 
for batch effects, was able to detect genes that were 
missing from the analysis of single study cases. Al-
though a more thorough experimental study is neces-
sary to confirm the carcinogenic effects of BPA, our 
results provide a robust set of genetic markers, includ-
ing BRCA1, BRCA2, TP53, TWIST1, and SMAD3 un-
der BPA exposure.

In conclusion, we identified that the 1,993 robust 
genetic markers of BPA via the meta-analysis based 
on the gene expression profile of BPA exposure data-
sets. Although the DEGs derived from meta-analysis 
and their biological functions suggested that BPA-ex-
posure is implicated in human breast carcinogenesis, 
further experimental studies are necessary to confirm 
whether our selected DEGs are indeed valid markers 



Mol Cell Toxicol (2017)  13:239-249 245

for BPA-induced breast cancer. We believe that this 
research may provide additional insights into the risk 
assessment of BPA in humans.

Materials & Methods

Dataset collection of BPA related toxicogenomic data

The microarray gene expression datasets necessary for 

Figure 4. The construction of a protein-protein interaction network. (A) The protein network showing that nodes and edges repre-
sent proteins and their interactions, respectively. Proteins are indicated as ellipses and transcription factors as octagons. The node 
color represents the expression level of DEGs, where red color indicates up-regulation and green color indicates down-regulation. 
The full network obtained through similarity analysis of DO (Disease Ontology) reveals 85 nodes and 386 edges. The biological 
process terms of GO are represented by a Venn diagram, indicating significant over-representation of 3 BP terms. Black asterisks 

(*) represent genes that were validated by qPCR. (B) Bar graphs showing that qPCR validation. Data are presented as means±SEM 

(n≥3). *indicates a significant difference compared with the control (P<0.05).

(A)

(B)
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meta-analysis to assess the carcinogenic risk of BPA 
were obtained from the NCBI GEO. The organism was 
Homo sapiens and the raw datasets for the research 
were limited to the GEO Series (GSEs) that are only 
related to BPA with expression profiling by Affymetrix 
array and Illumina high-throughput sequencing.

Data pre-processing

The raw datasets of microarray GSE were handled 
through the Bioconductor affy package36 in R. The ex-
pression values were normalized by the RMA (Robust 
Multi-array Average) algorithm37, and thus the pro-
cessed datasets were given log2-transformed values. 
Each dataset was sorted by unique Entrez ID using 
hgu133plus2.db, which is the annotation package of 
GEO platform (GPL) 570. If duplicate Entrez IDs were 
detected, they were substituted by the average value of 
themselves. Before integrating the RNA-Seq and mi-
croarray data, normalized reads per kilobase of exon 
model per million mapped reads (RPKM) containing 
values of RNA-Seq data were transformed following 
Mooney et al.26, using equation 1.

x = log2
 (RPKM) + 0.25 (1)

0.25 was added to avoid the occurrence of -∞ singu-
larity at RPKM = 0. The transformed RNA-seq data 
were combined with microarray datasets with unique 
Entrez ID.

Adjusting for batch effects

The surrogate variable analysis (SVA) R package38 was 
used to adjust for batch effects of combined datasets 
from different GSEs to remove non-biological batch 
effects arising from different procedures, platforms, 
and to prevent the removal of meaningful biological 
effects. The Combat function in the SVA package, a 
parametric empirical Bayes method24, was used for ad-
justing for known batch effects.

Differentially expressed genes using the Rank 
Product (RP)

The Rank Product analysis was used for calculating 
Rank Product (RP) values that were based on the fold 
change (FC) of the rank using the PrankProd R pack-
age39. Before the analysis, each batch was re-allocat-
ed to a respective control group and BPA-treatment 
group in order to calculate RP values to account for 7 
separate origins, based on the difference in cell lines 
and platforms (Figure 1). After all of the genes in each 
batch were sorted by RP values, the geometric mean 
ranks were calculated across the origins. The up- and 
down-regulated differentially expressed genes (DEGs) 

were selected in the estimated percentage of false pos-
itive predictions (pfp) through 200 permutation tests. 
Because the Rank Product is a rank-based method and 
the FC values were heterogeneous, an FC value greater 
than 1 was identified as an up-regulated DEG and less 
than 1 identified as a down-regulated DEG.

Functional classification of GO, KEGG pathway and 
disease similarity heatmap based on disease ontology 

(DO)

GO terms40 and the KEGG pathway41 were used for 
functional enrichment analyses. The GOstats package42 
was used in conducting the Hypergeometric-based test 
and KEGG.db R package was used for the pathway 
analysis. In addition, the clusterProfiler43 and Disease 
Ontology Semantic and Enrichment analysis (DOSE)44 
packages were used for enrichment analysis of DO and 
heatmaps for disease similarity, based on both Euclid-
ean distance method and complete linkage method.

Gene set enrichment analysis (GSEA)

Using microarray datasets on breast cancer (GSE17907 
and GSE20711)45,46 and endometrial cancer (GSE-
17025)47 tissues in humans, the microarrays of log FC 
values were regarded as a pre-ranked list for GSEA.

Construction of the BPA-related protein network 
analysis

The protein-protein interactions (PPIs) in Homo sapiens 
were obtained from the NCBI (ftp://ftp.ncbi.nlm.nih.
gov/gene/GeneRIF/). The PPIs related to DEGs were 
imported into Cytoscape software48. A Cytoscape plug-
in, BINGO49, was used to identify over-representation 
of GO terms for biological processes.

Cell culture and BPA treatment

MCF-10A cells were a kind gift from Dr. Sun Jung 
Kim (Dongguk University, Korea). They were grown 
in MEBM (Lonza, Walkersville, MD, USA), supple-
mented with MEGM Single Quots (excluding CA-
1000) (Lonza, Walkersville, MD, USA), 1% penicillin/
streptomycin (Gibco-Life Technologies, Waltham, MA, 
USA), and 100 ng/mL of cholera toxin (List Biological 
Laboratories, Campbell, CA, USA). The cells were 
maintained in a humidified incubator at 37°C with 5% 
CO2 and 95% air. Bisphenol A (BPA; Sigma, Saint 
Louis, MO, USA) was dissolved in dimethyl sulfoxide 

(DMSO; Sigma, Saint Louis, MO, USA). MCF-10A 
cells were seeded into 100 mm tissue culture dishes 

(SPL Life Science, Pocheon, Gyeonggi, Korea) at 5 ×  
105 cells for 24 hr, and treated with 1, 5, 10 μM BPA, 
and 0.01% DMSO as vehicle control for 6 days.



Mol Cell Toxicol (2017)  13:239-249 247

Real-time quantitative PCR

Total RNA was extracted by using TRIzol reagent (In-
vitrogen, Carlsbad, CA, USA), which was reversely 
transcribed using AMV reverse transcriptase (Promega, 
Madison, WI, USA) and oligo (dT) primers, according  
to the manufacturer’s instructions. The resulting cDNA 
was used as a template for qPCR analysis using the 
SYBR® Premix Ex TaqTM (TAKARA BIO, Kusatsu, 
Shiga, Japan) with the CFX ConnectTM Real-Time PCR 
Detection System (Bio-Rad Laboratories, Hercules, 
CA, USA). The temperature profile of the reaction was 
95°C for 2 min, followed by 40 cycles of denaturation 
at 95°C for 15 s, annealing at 61°C for 30 s, and exten-
sion at 72°C for 45 s. All reactions were performed in  
triplicates of three independent assays. The oligonucle-
otide primer sequences used in qPCR analyses were as 
follows: BRCA1 forward, 5ʹ-CCTTCTACTGTCCTG 
GCTACTA-3ʹ and reverse, 5ʹ-CAGATTTCCAAGGG 
AGACTTCA-3ʹ; BRCA2 forward, 5ʹ-CTCAGCCCAG 
ATGACTTCAAA-3ʹ and reverse, 5ʹ-GGACTAACAG 
GTGGAGGTAAAG-3ʹ; TP53 forward, 5ʹ-GGGATGT 
TTGGGAGATGTAAG-3ʹ and reverse, 5ʹ-CAGATAT 
GGGCCTTGAAGTTAG-3ʹ; SMAD3 forward, 5ʹ- 
ACAGGAGATGTAGGGAGAAGAA-3ʹ and reverse, 
5ʹ-CTCTAGCCAAGTCACACAGTAAG-3ʹ; TWIST1 
forward, 5ʹ-CGGAGACCTAGATGTCATTGTTT-3ʹ 
and reverse, 5ʹ-ACGCCCTGTTTCTTTGAATTTG-3ʹ; 
GAPDH forward, 5ʹ-GTGGTCTCCTCTGACTTCAAC- 
3ʹ and reverse, 5ʹ-CCTGTTGCTGTAGCCAAATTC-3ʹ. 
GAPDH was used as the internal control.

Statistical analysis

A One-way ANOVA followed by Tukey’s multiple 
comparison tests was performed to determine the sig-
nificant differences among groups. All values are ex-
pressed as means±SEM. Statistical significance was 
considered as P<0.05.
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