
Polychlorinated biphenyls (PCBs) are persistent 
organic compounds that have been banned since 
1970s, but continue to contaminate the environment. 
PCBs are categorized into two structural groups: 
coplanar and non-coplanar PCBs. The coplanar 
PCBs are dioxin-like potent toxic compounds. To 
evaluate their effects on humans, we chose a copla-
nar PCB77 for data analysis. We performed meta- 
analysis by integrating datasets via the Rank Prod-
uct method, and identified 375 up- and 66 down- 
regulated differentially expressed genes (DEGs). 
Notably, up-regulated genes were significantly asso-
ciated with liver and kidney diseases. Using gene 
ontology enrichment, we found that the up-regulated 
DEGs were significantly enriched in the apoptotic 
process (false discovery rate, FDR =1.62e-10) and 
response to unfolded protein (FDR=7.65e-10). Pro-
tein-protein interaction networks identified the hub 
proteins containing HSP90AB1 and HSPA5. These 
findings suggest that our DEGs may provide a robust 
set of genetic markers for PCB77.

Keywords: Coplanar Polychlorinated biphenyls, Meta- 
analysis, Risk assessment, Liver disease, Kidney disease

Introduction

Polychlorinated biphenyls (PCBs) are organic chlo-
rine compounds with 1 to 10 chlorine atoms attached 
to a biphenyl ring [C12H10-nCln

 (n = 1-10)] (Figure 1). 
Due to their inherent properties of high thermal con-
ductivity, low flammability, and high resistance to 
thermal degradation1, PCBs were widely used as 
dielectric fluids in capacitors and transformers, heat 
transfer fluids, hydraulic fluids, coolants, lubricants, 
and sealants, as additives in paints, plastics, and dyes, 
and as extenders in pesticide. PCBs are endocrine dis-
ruptors which act as xenoestrogens that accumulate in 
the body fat, and are usually amassed through contam-
inated food and water. Most recently, it was found that 
one of UK’s last killer whales (LuLu) had shockingly 
high levels of PCB contamintion2. Previous studies 
showed that PCBs act as carcinogens in breast3, stom-
ach4, and liver5,6, and are also implicated in atheroscle-
rosis and cardiovascular diseases7. When fetus or new-
borns are exposed to PCBs, they may retain permanent 
and irreversible damages8,9 in developing nerves and 
reproductive organs10.

Theoretically, a total of 209 isoforms or congeners 
of PCBs can be produced, which are further subdivid-
ed into 10 homologs, depending on their characteris-
tics11. There are a total of 12 types of coplanar PCBs 
and rest of them are all in the categorized as non- 
coplanar PCBs. Non-coplanar PCBs have chlorines in 
the ortho-position, whereas coplanar PCBs have chlo-
rine atoms in both para-positions and at least one in 
the meta-position, but are lacking in the ortho-position 

(Figure 1)12,13. Coplanar PCB structures are analogous 
to dioxins because of rotation of phenyl-phenyl groups. 
It has been shown that traces of coplanar PCBs impart 
the toxicity to mixed PCBs1.

The microarray technology has been used to identify 
the impact of various chemicals on animals, especially 
humans. The public microarray databases such as 
NCBI GEO, ArraryTrack, and ArrayExpress have been 
consistently accumulating quantified and standardized 
experimental data. In addition, bioinformatics tools 
have become more diverse, statistical techniques more 
powerful, thus enabling the integration of heteroge-
neous platforms from different studies and selecting 
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differentially expressed genes (DEGs) with increased 
statistical power14. Because it has been widely report-
ed that the toxic response of coplanar PCBs may vary 
greatly depending on the species and organs, it is diffi-
cult to undertake cross-species analysis between dif-
ferent animal species. In addition, non-coplanar PCBs 
are often contaminated by coplanar PCBs, and the 
members of coplanar PCBs may have different modes 
of toxic reactions. Thus, we chose to work with micro
array data derived from human samples treated with a 
single compound of coplanar PCB, namely PCB7715. 
In this study, we used the Rank Product algorithm16,17 
to identify DEGs, using microarray data obtained from 
PCB exposure experiments in human cells. The gene 
expression levels of meta-analysis were compared with 
four liver and two kidney disease gene sets using Gene 
Set Enrichment Analysis (GSEA)18. Gene ontology 

(GO) enrichment analysis and Protein-protein interac-
tion (PPI) networks were conducted to identify wheth-
er the levels of gene expressions with PCB77 exposure 
were associated with liver and kidney diseases.

Results and Discussion

PCBs have once been widely used for many prod-
ucts, including transformers and hydraulic fluids, and 
coolants11. After their environmental toxicity were 
confirmed, the production was banned in many coun-
tries. However, due to their chemical stability, PCBs 
are still detected in the environment in the current days 
and they are considered as persistent organic pollutants 

(POP). All PCBs induce the formation of reactive oxy-
gen species, genotoxic effects, immune suppression, 
inflammatory response, and endocrine effects19 to var-
ious extents and through different pathways20. Of the 
206 possible congeners of PCBs, 12 PCBs are catego-
rized as coplanar PCBs11. Dioxin and dioxin-like che
micals are a family of diverse toxic chemicals with a 
similar chemical structure, and sharing a common 
mechanism of toxicity21. Coplanar PCBs are considered 
to be dioxin-like and are of special interest since they 
can affect humans through Aryl hydrocarbon receptor 

(AhR) activation, similar to the dioxin family. These 
effects are mainly related to carcinogenesis due to their 
involvement in cell cycle control22, cell proliferation22, 
inhibition of apoptosis23, and suppression of cell-to-
cell communication24. In this study, we attempted to 
investigate the effects of coplanar PCBs on humans 
via meta-analysis for the first time. After integrating 
datasets related to coplanar PCB77 exposure to human 
cells and adjusting for batch effects, Rank product 
algorithm was used to identify DEGs.

Meta-analysis to Identify Differentially 
Expressed Genes

Recent studies showed that dioxin-like compounds 
such as coplanar PCBs vary in their modes of toxic 
response amongst the different species. Therefore, we 
originally obtained all the available datasets from the 
NCBI GEO database, where human cells were exposed 
to single compound coplanar PCBs. These datasets were 
obtained from the human cell lines, such as PCB77 on 
human liver carcinoma HepG2 cells (GSE6869), 
PCB77 on human kidney cells HK2 cells (GSE23493), 
and PCB126 on human primary hepatocytes (GSE 
14553). However, as claimed by the original study and 
confirmed by our analysis, the responsivity of human 
hepatocytes to PCB126 was very low (data not shown)25; 
hence, the dataset GSE14553 was eliminated from our 
study. In addition, since the studies revealed that the 
expression levels of many genes are not significantly 
regulated at 30 min of PCB77 exposure26, these data 
were eliminated from the final analysis. A limitation of 
this study is that the datasets used in this study is very 
small compared with other meta-analysis research. 
This phenomenon may possibly be due to the early 

(ca. 1970) ban of PCBs in many countries. In addition, 
the modes of toxic responses are known to be very dif-
ferent in other animals so that it was impossible to 
make cross-species analyses25.

To identify robust genetic markers for the risk assess
ment of PCB77, we first converted microarray probe 
IDs to unique Entrez gene IDs using the average value 
of several probes. A total of 20,514 genes were obtained 
in the two datasets we used. After adjusting for batch 

Figure 1. The nomenclatures and structures of PCBs, dioxin, and PCB77. (A) The structure of PCBs. There are biphenyl groups 
with 12 carbons, forming four ortho-, four meta-, and four para-positions. (B) The structure of tetrachlorodibenzodioxin, one of the 
representative dioxins. (C) The structure of a coplanar PCB, PCB77.

(A)	 (B)	 (C)
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effects, we performed meta-analysis on the integrated 
datasets to identify DEGs using the Rank Product (RP) 
method, which is a robust algorithm for meta-analysis 
using multiple heterogeneous datasets. By applying a 
minimal fold change (FC) of 1.2 and a cutoff p-value 
of 0.01, a total of 441 genes were identified as DEGs. 
375 genes were up-regulated and 66 genes were down- 
regulated under PCB77 treatment (Table S1).

Identifying the Correlation between Diseases 
and PCB77

In humans, it is well established that the most pro-
foundly affected organ of short-term exposure to diox-
ins and dioxin-like compounds is the liver27. In addi-
tion, kidney is one of the extrahepatic tissues which is 
in direct contact with such xenobiotic agents during 
metabolism and clearance28. In order to understand 
whether the exposure to PCB77 was related to disease 
states at the gene expression levels, GSEA was con-

ducted using microarray datasets from liver and kidney 
diseases in humans. The gene sets DEGs of type 2 dia-
betes (T2DM) of GSE2334329, steatosis, non-alcoholic 
steatohepatitis (NASH) of GSE6306730, hepatocellular 
carcinoma (HCC) of GSE76427, kidney tissue on renal 
cell carcinoma (RCC) of GSE6627131, and chronic 
kidney disease (CKD) of GSE6649432 were identified 
using the limma R package.

The GSEA results showed that the up-regulated DEGs 
obtained from four liver and two kidney diseases were 
significantly enriched in up-regulated when PCB77 

(Figure 2A). Because the up-regulated DEGs were 
closely associated with various liver and kidney dis-
eases, the DEGs were assigned to the GO enrichment 
analysis to gain insights into the biological roles of 
PCB77 exposure. We found that our up-regulated DEGs 
were significantly enriched in the regulation of apop-
totic process (GO: 0042981, FDR = 1.62e-10), response 
to unfolded protein (GO: 0006986, FDR = 7.65e-10), 

Figure 2. Functional enrichment analysis and the correlation between PCB77 and liver and kidney diseases. (A) GSEA plots show-
ing that up-regulated DEGs of four liver and two kidney diseases were significantly enriched with PCB77 exposure. The GEO 
accession number was shown on the left side of each GSEA plot. (B) Functional enrichment analysis of GO biological process 
terms using up-regulated DEGs under PCB77 exposure. The color represents significance levels. T2DM, type 2 diabetes mellitus; 
NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; CKD, chronic kidney disease; RCC, renal cell carcinoma; 
NES, normalized enrichment score; FDR, false discovery rate.

(A)

(B)
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response to stress (GO: 0006950, FDR = 1.90e-08), 
regulation of signal transduction (GO: 0009966, FDR=  
2.08e-08), and response to chemicals (GO: 0042221, 
FDR = 6.85e-06) (Figure 2B).

Even though both non-coplanar and coplanar PCBs 
induce oxidative stress and eventually apoptosis, they 
use distinctly different pathways26. While the oxida-
tive stress induced by non-coplanar PCBs activates the 
Fas receptor signaling pathway, coplanar PCBs, along 
with dioxin and dioxin-like chemicals, have a strong 
association with aryl hydrocarbon receptors (AhR). The 
main role of AHR pathway is to increase the expres-
sion of cytochromes P450 1A1 (CYP1A1), which in 
turn hydroxylates the chemical when a xenobiotic 
enters the body. CYP1A1 detoxifies polycyclic aro-
matic compounds and the activation of this enzyme 
generates mutagenic metabolites and oxidative stress33. 
Binding affinities differ for the AhR, depending on the 
chemical structures of compounds. The binding affini-
ty of dioxin is the highest, followed by coplanar PCB, 
and non-coplanar PCB having the lowest binding 
affinity. The expression levels of AhR-dependent 
CYP1A1 increased in a dose-dependent manner when 
treated with dioxin34. These results were consistent 
with our finding that CYP1A1 (FC=4.25, p=1.7.E-09) 
was the most up-regulated DEG. Notably, AhR (FC =  
1.42, p = 1.67e-02) was not classified as a DEGs in 
our study, since we used a very strict threshold (p< 
0.01). However, when the significance was set at 0.05, 
the expression level of AhR can be considered as sig-
nificant. Additionally, MYC (MYC proto-oncogene, 
bHLH transcription factor), and NDRG1 (N-myc 
downstream regulated 1), which are closely related to 
the AHR pathway26, were also up-regulated DEGs 
under PCB77 exposure (Table S1).

Over 70% of patients with T2DM have had NAFLDs, 
which in extreme cases can develop into serious liver 
disorders, such as NASH, liver cirrhosis, and HCC35. 
Our results showed that PCB-treatment is significantly 
correlated with these liver disorders in up-regulated 
genes in response to PCB exposure (Figure 2A). In 
addition, similar correlation patterns were observed in 
the expression datasets of kidney diseases, including 
CKD and RCC (Figure 2A). To determine the biologi-
cal processes involved, the GO enrichment analysis 
was performed using up-regulated DEGs. Our top 3 
significantly enriched GO terms were the regulation of 
apoptotic process (FDR = 1.62e-10), response to un
folded protein (FDR = 7.65e-10), and response to stress 

(1.90e-08) (Figure 2B). All three terms were in close 
association with endoplasmic reticulum (ER) stress36. 
Even though the long-term exposure of dioxin and 
dioxin-like xenobiotics are known to interfere with the 
development of brain and reproductive organs in fetus37, 

we were unable to detect any meaningful correlation 
with the down-regulated genes in GSEA as well as GO 
enrichment analysis in our study. This may be due to 
the fact that our datasets were mainly obtained from 
adult human cells with a short-term exposure to PCB77 
and the number of samples. Together, the data suggests 
that the main target disease development and/or patho-
genesis of PCB77 are via up-regulated genes.

Protein-protein Interaction Network Analysis
Because the expression levels of the up-regulated 

DEGs were significantly related to liver and kidney 
diseases, the protein-protein interaction (PPI) networks 
were established for understanding the biological inter
actions among the up-regulated genes. In the entire 
PPI network (Figure 3), a sub-network was identified 
using DEGs contained in 5 GO terms, as shown in 
Figure 2B. The network consisted of 50 proteins and 
60 interactions (Figure 4). Among the total 50 proteins, 
23 proteins were involved in regulation of apoptotic 
process GO term (Figure 2B). Notably, the hub proteins 
containing HSP90AB1 (heat shock protein 90 alpha 
family class B member 1, Degree = 10) and HSPA5 

(heat shock protein family A (Hsp70) member 5, 
Degree = 9) were also included in response to unfold-
ed protein GO term (Figure 2B). The HSP90 dimer 
binds with Ahr protein before the AHR signaling path-
way38. A transgenic mouse with constitutively active 
Ahr caused by removing the HSP90-binding domain 

(amino acid residues 288-421) promoted hepatocar-
cinogenesis39. HSPA5, an ER chaperone protein, is a 
central regulator of ER stress, involved in folding of 
the new proteins and refolding of damaged proteins, 
and thereby regulating the stability between cell sur-
vival and apoptosis in ER-stressed cells40,41. Collec-
tively, PPI network analyses showed that HSP90AB1 
and HSPA5 were major proteins implicated in liver 
and kidney toxicity of PCB77.

This study is not without limitations20. We were un
able to carry out experiments for validation of PCB77- 
induced genes since import of PCB has been banned 
in Korea since 1996. The amount of the datasets used 
in this study was very small, possibly due to the early 
ban of PCBs. This situation is not likely to improve in 
future, due to the almost global ban of PCB produc-
tion. Various studies are still performed with PCB- 
contaminated animals and human subjects. However, 
the results cannot provide definitive answers for the 
risk assessment of specific PCBs, because the subjects 
are exposed to various mixtures of PCBs. At this point, 
we believe that our study is the best possible meta- 
analysis of the risk assessment of PCB77 in human 
health.
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Materials and Methods

Data Mining to Identify Genes Associated 
with PCB Exposure

The NCBI Gene Expression Omnibus (GEO) data-
base42 was used to obtain raw data for meta-analysis. 
The obtained data were from the Affymetrix microar-
ray datasets associated with coplanar PCBs, with a 

clear note that coplanar PCBs were treated as a single 
compound. Coplanar PCBs are known to be similar to 
dioxins in terms of chemical structure and mode of 
action in animals. The obtained datasets were two 
GEO series (GSE): PCB77 on human liver carcinoma 
HepG2 cells (GSE6869) and on human kidney cells 
HK2 cells (GSE23493). The total number of control 
groups was 6 and that of PCB77-treatment groups was 

Figure 3. The entire protein-protein interaction network of the up-regulated DEGs. 124 nodes represent proteins and 249 edges 
represent interactions. Proteins are indicated as round rectangles, and transcription factors as diamonds. The node color represents 
the neighborhood connectivity (degree). The blue border represents the proteins involved in the regulation of apoptotic process (GO: 
0042981) GO term in Figure 2B.
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12, in which 30 min-treated samples were excluded.

Data Pre-processing
The raw datasets of each microarray GSE were pro-

cessed by the oligo package43 of R language, and the 
expression values were normalized by the RMA (robust 
multi-array average) algorithm44,45. All microarray 
probe names were replaced with unique Entrez ID 
using the Human Affymetrix microarray annotation 
package, hgu133plus2.db45, because Entrez IDs are the 
universally used IDs in numerous bioinformatics anal-
ysi. In case where multiple values were obtained for a 
single Entrez ID, the arithmetic mean of the values 
was used as the gene expression value.

Adjusting for Batch Effects
Adjusting for non-biological batch effect was per-

formed following Jung et al.45. Briefly, the surrogate 
variable analysis (SVA) packages in R language was 
used to remove batch effects which may occur from 
non-biological variation arising from merging multiple 
studies performed in different environments45. Within 
this package, the ComBat function, which adjusts each 
gene expression level independently46, was used to 
remove batch effects.

Differentially Expressed Gene Analysis Using 
Rank Product Methods

The R package RankProd was used to find DEGs in 

the integrated datasets as previously described45. Based 
on the ranked fold change (FC) of each gene, the Rank 
Product (RP) values were calculated by RP function in 
the RankProd R package. With this RP value, DEGs 
were allocated to the two lists of up-regulated and 
down-regulated genes through default 100 permutation 
tests.

Gene Set Enrichment Analysis (GSEA)
The GSEAPreranked method was used for the GSEA. 

Gene expression datasets for human liver tissues on 
type 2 diabetes (GSE23343)29, steatosis, non-alcoholic 
steatohepatitis (GSE63067)30 and hepatocellular carci-
noma (GSE76427) were used, as well as for human 
kidney tissues on renal cell carcinoma (GSE66271)31 
and chronic kidney disease (GSE66494)32. DEGs deriv
ed from the limma R package47 were used as gene sets.

Gene Ontology Enrichment and Protein-
protein Interaction Network Analysis

The protein-protein interactions (PPI) network and 
gene ontology (GO) enrichment analysis was performed 
using the STRING database (v10.5)48. Interaction 
sources in this database are divided into 5 categories: 
(1) experimental interactions, (2) pathway knowledge 
interactions obtained from manually curated databas-
es, (3) text-mining interactions using a large collection 
of articles, (4) predicted interactions using genomic 
information and co-expression analyses, and (5) inter-

Figure 4. A protein-protein interaction network of the up-regulated DEGs in five major GO terms. Nodes represent proteins and 
edges represent interactions between two proteins. Proteins are indicated as round rectangles, and transcription factors as diamonds. 
The node color represents the neighborhood connectivity (degree). The blue border represents the proteins involved in regulation of 
apoptotic process (GO: 0042981) GO term in Figure 2B.
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actions of orthology relations that are systematically 
applied to other organisms, when the observation was 
made in one organism. In this study, only experimental 
interactions were used. The PPI network was visualized 
by Cytoscape software49. The GO enrichment analysis 
was conducted on biological processes.
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