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Abstract

Stroke, characterized by sudden neurological deficits, is the second leading cause of death worldwide. Although genome-wide
association studies (GWAS) have successfully identified many genomic regions associated with ischemic stroke (IS), the genes
underlying risk and their regulatory mechanisms remain elusive. Here, we integrate a large-scale GWAS (N = 1 296 908) for IS together
with molecular QTLs data, including mRNA, splicing, enhancer RNA (eRNA), and protein expression data from up to 50 tissues (total
N = 11 588). We identify 136 genes/eRNA/proteins associated with IS risk across 60 independent genomic regions and find IS risk is
most enriched for eQTLs in arterial and brain-related tissues. Focusing on IS-relevant tissues, we prioritize 9 genes/proteins using
probabilistic fine-mapping TWAS analyses. In addition, we discover that blood cell traits, particularly reticulocyte cells, have shared
genetic contributions with IS using TWAS-based pheWAS and genetic correlation analysis. Lastly, we integrate our findings with a
large-scale pharmacological database and identify a secondary bile acid, deoxycholic acid, as a potential therapeutic component. Our
work highlights IS risk genes/splicing-sites/enhancer activity/proteins with their phenotypic consequences using relevant tissues as
well as identify potential therapeutic candidates for IS.

Keywords: ischemic stroke; multiome-wide association study; phenome-wide association study and genetic correlation analysis; drug
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Introduction
Stroke is a complex disease resulting from an interruption of
blood flow to the brain [1]. A common type of stroke is ischemic
stroke (IS), which is caused by cerebral infarction [2]. Diabetes,
obesity, hypertension, and coronary artery disease are well-known
risk factors for stroke [3–6], but the pathogenesis of IS is still
largely unknown. Although genome-wide association studies
(GWAS) have successfully identified genomic regions associated
with IS outcomes, the genes underlying IS risk and their regulatory
mechanisms remain elusive as the majority of associated variants
are non-coding in nature [7, 8].

Recently, the transcriptome-wide association study (TWAS)
approach attempts to mitigate this gap in understanding
by integrating GWAS associations together with molecular
quantitative trait loci (molQTL) data [9, 10]. Previous works have
leveraged TWAS to identify candidate susceptibility genes for
IS risk, however these analyses have three primary limitations.
First, previous analyses were limited to integration of molQTLs
measured in whole blood, adipose, and brain tissues [11, 12],
which may miss disease mechanisms in less understood or
unknown disease-relevant tissues [13–15]. Second, prior works

focused on integration of expression QTL (eQTL) and protein
QTL (pQTL) [12, 16], which may miss independent regulatory
mechanisms important for IS risk. For example, an essential
mechanism of gene regulation and a significant factor in
genetic risk of disease is the genetic control of alternative
splicing (i.e. sQTLs) [17]. Moreover, recent work demonstrated
enhancers undergo activity-dependent transcription, resulting in
the production of noncoding enhancer RNAs (eRNAs) which serve
as a crucial hallmark of enhancer activation [18, 19]. Third, while
the GAGASTROKE prioritized relevant tissues for IS by leveraging
eQTL data, it relied on the GTEx v7 study (N = 388), [12], which
had a smaller sample size than the European GTEx v8 study
(N = 588). Lastly, the L1000 Connectivity Map (CMap), a public
database for large pharmalogical datasets, provides extensive
gene expression profiles of thousands of compounds in various
human cell lines [20]. Recent studies have successfully provided
novel therapeutic candidates by utilizing TWAS results with the
pharmalogical database [21, 22].

Here, we integrate large-scale IS GWAS data (N = 62 100 cases
and 1 234 808 controls) with gene expression, alternative splicing,
eRNA and protein abundance data (N = 11 588) from 50 different
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tissues to identify IS susceptibility genes, tissues, and drug tar-
gets. We identify 136 genes/splicing sites/eRNA/proteins across 54
genomic regions whose genetically predicted activity is associated
with IS risk using a multi-tissue mRNA/splicing/eRNA/protein
transcriptome-wide association study (TWAS/spTWAS/eTWAS/P-
WAS). We leverage TWAS results to identify tissues relevant for IS
risk and find arterial and brain most enriched for eQTL mediated
heritability. Focusing on the IS-relevant tissues, we perform proba-
bilistic fine-mapping analyses of TWAS results to prioritize 9 puta-
tive causal genes/proteins. Among them, only 3 genes/proteins
(i.e. FOX2, F11, MMP12) were identified in previous GWAS or TWAS
studies [7, 12, 16]. In addition, we conduct a TWAS-based pheWAS
analysis to understand the phenotypic consequences of identified
IS susceptibility genes, and the identified reticulocyte cell traits
are significantly correlated with IS. In addition, we discover that
reticulocyte traits have shared genetic contributions with IS using
TWAS-based pheWAS and genetic correlation analysis. Lastly, to
find therapeutic drug candidates for IS risk, we integrate our
TWAS findings with 308 872 pairs of compound and compound-
perturbed cell-type specific gene expression alterations from the
L1000 Connectivity Map. Using this approach, we detect a sec-
ondary bile acid, deoxycholic-acid (DCA), as a potential thera-
peutic component. Overall, our results shed light on underlying
molecular mechanisms and tissue contexts that cause ischemic
stroke.

Results
Multi-tissue TWAS/spTWAS/eTWAS/PWAS
identifies genes/proteins associated with IS risk
To identify susceptibility genes and proteins for IS risk, we con-
ducted a multi-tissue TWAS, spTWAS, and PWAS analysis by
integrating large-scale IS GWAS summary statistics (N = 1 296 908)
together with eQTL/spQTL data from GTEx v8 [23] in addition
to plasma pQTL data from the INTERVAL [24] and the ARIC
[25] studies. Moreover, we performed enhancer TWAS analysis
(eTWAS) using brain EeQTL from CMC [19] to investigate the
impact of genetic regulation of expressed enhancers on IS risk
(see Methods). Focusing on predicted mRNA expression, we tested
309 826 panel-specific expression models across 28 073 genes and
identified 268 TWAS associations. Significant associations repre-
sented 84 genes across 50 tissues and 45 independent linkage
disequilibrium (LD) blocks [26] based on a per-panel Bonferroni
correction threshold (Fig. 1A and Supplementary Table S1). Next,
to shed light on the role of alternative splicing for IS risk, we
performed a multi-tissue splicing transcriptome-wide association
study (spTWAS; see Methods). Of the 370 815 panel-specific splic-
ing models with 16 848 tested genes, we identified 498 spTWAS
associations. Associations represented 69 unique genes across
48 tissues at 29 genomic regions, the same as TWAS analysis
(Fig. 1B and Supplementary Table S2). In addition, we carried
out an eTWAS to investigate expressed enhancer effects in two
brain tissues using 10 622 tissue-specific eTWAS models with 8397
eRNAs. We identified two enhancers, chr4:186651582:186652095
and chr16:87541308:87541807, in DLPFC and ACC tissues, respec-
tively (Fig. 1C and Supplementary Table S3). Lastly, we focused
on the impact of genetically predicted protein abundance by
performing a PWAS using 2299 panel-specific protein abundance
models with 1556 proteins. We identified 7 PWAS associations
across 6 proteins with 6 genomic regions (Fig. 1D and Supple-
mentary Table S4). PWAS results from both pQTL panels showed
strong positive correlation (R = 0.79; P-value < 2.2 × 10−16; Supple-
mentary Fig. S1), suggesting that the genomic component of

protein abundance is well-captured by fitted models. Comparing
the analysis results of TWAS and spTWAS, a total of 21 genes were
implicated by both approaches, with ABO and F11 representing
the genes or proteins identified by all three approaches (Supple-
mentary Fig. S2A). Among the genomic regions examined, the
chr4:186651582:186652095 region was implicated by TWAS/spT-
WAS/eTWAS/PWAS approaches (Supplementary Fig. S2B). Addi-
tionally, the genomic region chr12:110336719:11326351 covers a
total of 17 genes or proteins, which is the region with the high-
est number of genes or proteins. In summary, we identified 60
genomic regions with a total of 136 susceptibility genes, splicing
sites, eRNA, and proteins based on multi-tissue TWAS/spTWAS/P-
WAS approaches. Among the 60 genomic regions we identified, 18
regions overlapped with the GIGASTROKE GWAS result that we
used in this study [16].

To provide additional support for genes identified using TWAS,
we re-performed analyses using independent approaches and
prediction models. First, we compared TWAS and spTWAS results
with those computed by S-PrediXcan [27], an independent method
to perform a TWAS analysis and fit predictive models. We found
S-PrediXcan results were strongly correlated with FUSION-based
TWAS (R = 0.80; P-value < 2.2 × 10−16) and spTWAS (R = 0.82; P-
value < 2.2 × 10−16; Supplementary Fig. S3). Second, we carried out
a co-localization analysis, which reports the posterior evidence
that two phenotypes share a causal variant. Here, we identified
51.49% (138 out of 268) TWAS associations exhibited evidence of
co-localization between GWAS signals and eQTLs (Supplemen-
tary Table S1). Similarly, among the 498 spTWAS associations,
we observed that 271 associations (54.41%) had evidence of co-
localization between IS GWAS signal and spQTL association (Sup-
plementary Table S2). We observed that the H4 posterior proba-
bility (PP) of co-localization, correlated with the TWAS (R = 0.52;
P-value < 2.2 × 10−16) and spTWAS (R = 0.54; P-value < 2.2 × 10−16).
Moreover, concerning the significant 268 TWAS and 498 spTWAS
associations, the respective median PP values for H3 + H4 are 0.98
and 0.99, respectively. (Supplementary Fig. S4). Repeating this
analysis for PWAS signals, we observed ABO, F11, and MMP12
displayed evidence of colocalization between GWAS and pQTL
signals (Supplementary Table S4). Despite eTWAS identifying 2
eTWAS signals, we found little support for colocalization between
eTWAS and IS GWAS (Supplementary Table S3). The GIGASTROKE
consortium recently performed IS TWAS analyses based on GTEx
v7 prediction models and identified 17 genes across brain, artery,
and heart tissues [16]. We sought to assess the stability of these
associations by comparing them with our results which leveraged
the larger GTEx v8 and INTERVAL/ARIC cohorts. Among the 17
TWAS genes identified in the previous analyses, we found 7
replicated in our TWAS results (average Bonferroni across tissues,
P < 7.39 × 10−6). Similarly, we observed a significant correlation
between the TWAS effect sizes in the original GIGASTROKE study
with those computed using our prediction models (R = 0.73; Sup-
plementary Fig. S5). In summary, our findings support a role for
genetically regulated expression, splicing, and proteome levels
contributing IS risk.

Relevant tissues for IS risk include brain and
arterial tissues
Given the broad number of tissues exhibiting TWAS/spTWAS/P-
WAS associations, we sought to quantify which tissues are most
relevant for IS risk for each molecular context. Specifically, we
estimated the proportion of heritability mediated by cis-QTL of

gene expression levels
(
h2

med/h2
g

)
and alternative splicing levels
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Figure 1. Multi-tissue TWAS/spTWAS/PWAS for IS risk. Manhattan plots of multi-tissue (A) TWAS, (B) spTWAS, (C) eTWAS, and (D) PWAS. Each
point corresponds to a P-value (y-axis) of TWAS/spTWAS/eTWAS/PWAS associations across reference panels and chromosomes (x-axis). The most
significant associations of TWAS/spTWAS/eTWAS/PWAS genes among reference panels represent differnet colors, respectively. The dotted lines
represent the maximum significant thresholds in this multi-tissue analysis (Supplementary Table S8). The thresholds of TWAS/spTWAS/eTWAS/PWAS
indicate 2.23 × 10−5, 2.00 × 10−5, 1.02 × 10−5, and 5.03 × 10−5, respectively. The putative causal genes (PIP > 0.8) in Table 1 represented gene/proteins of
TWAS/spTWAS/PWAS indicating different colors, respectively.
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(
h2

spmed/h2
g

)
using mediated expression score regression (MESC; see

Methods) [28]. Using this approach, we identified 3 tissues which
exhibited h2

med/h2
g estimates greater than 0 at nominal significance

(P-value < 0.05). We found “Artery—Aorta” exhibited the greatest
h2

med/h2
g value (h2

med/h2
g = 0.101, s.e = 0.038; P-value = 4.55 × 10−3),

followed by “Esophagus_Muscularis” (h2
med/h2

g = 0.082, s.e = 0.040;
P-value = 1.86 × 10−2) and “Brain_Amygdala” (h2

med/h2
g = 0.068,

s.e = 0.040; P-value = 4.55 × 10−2) (Fig. 2). The connection between
esophagus-muscular tissue and ischemic stroke is not fully
understood, but recent evidence suggests that damage to the
esophagus-muscular tissue may be a risk factor for ischemic
stroke. Previous studies found that people with a history of
esophageal disorders, such as gastroesophageal reflux disease
(GERD), were more likely to have an ischemic stroke [29, 30].
Our results are supportive of understood IS etiology in which
IS occurs due to blood clotting or fatty deposits caused by
atherosclerosis that obstruct an artery supplying blood to the
brain [31]. Atherosclerosis is commonly thought of as a condition
that affects the heart; however, it can also impact arteries
located anywhere in the body [32]. In the splicing MESC, “Brain
- Nucleus accumbens (basal ganglia)” (h2

spmed/h2
g = 0.085 and

s.e.= 0.056) was a high rank in the splicing MESC (Supplemen-
tary Fig. S6). Results from expression and splicing MESC showed
low correlation across tissues (R = 0.33; P-value = 2.24 × 10−2;
Supplementary Fig. S7 and Supplementary Table S5). Addition-
ally, we observe a positive correlation between tissue GTEx
sample size and the magnitude of expression MESC (R = 0.35; P-
value = 0.01); however, there is no significant relationship between
splicing MESC and the sample size (R = −0.06; P-value = 0.67;
Supplementary Fig. S8).

Fine-mapping analysis identifies 9 causal
genes/proteins for IS risk
Next, we performed TWAS fine-mapping analysis to identify puta-
tive causal genes with multiple signals in the TWAS region pri-
oritizing IS-associated tissues obtained from the MESC analysis
[33] (Fig. 2). Among the 84 TWAS significant genes, we iden-
tified 5 with posterior inclusion probability (PIP) >0.8, which
we denote as putative causal genes for IS (Table 1). For exam-
ple, ANO1 (PIP = 0.89; also known as TMEM16A) is suggested to
regulate calcium-activated chloride channels and has prior evi-
dence in mouse ischemic stroke models where inhibition of ANO1
expression levels attenuated ischemic brain injury by neurolog-
ical impairment [34]. We separately performed spTWAS fine-
mapping analysis to identify splice variation that may be causally
related to IS risk prioritizing brain tissues obtained from splicing
MESC analyses. Of the 69 spTWAS significant genes, we identi-
fied only MAPKAPK5-AS1 with PIP >0.8 (Table 1). The mitogen-
activated protein kinase (MAPK)-activated protein kinase 5 (APK5),
a member of the serine/threonine kinase family, is activated by
cellular stress and proinflammatory cytokines [35]. The MAP-
KAPK5 Antisense RNA 1 (MAPKAPK5-AS1) prevents MAPKAPK5
from being translated into a protein and recent study showed
that IS-like pathology was ameliorated by inhibiting the MAPK
signaling pathway [36]. Lastly, we performed PWAS fine-mapping
to identify protein levels causally relevant to IS risk. Of the 7
PWAS significant associations identified, we found 3 with PIP
>0.8 (Table 1). Of these 3, F11 and MMP12 genes were identi-
fied in a previous TWAS of IS risk [12]. Together, we prioritize
9 putative causal genes/proteins based on relevant tissue for IS
risk.

IS susceptibility genes correlate with reticulocyte
cell traits
To understand the phenotypic consequences of identified IS
susceptibility genes, we performed a TWAS-based pheWAS
analysis (see Methods). Analogous to the TWAS approach, the
TWAS-based pheWAS approach has produced more biologically
interpretable results by mapping the genome to the phenome
using the transcriptome [37]. We identified 71 traits across a broad
range of physical measures (47.9%) and blood cell traits (33.8%)
(Supplementary Fig. S9). In the category of physical measures,
an average of 25.4% of genes (11.7/46 genes) detected only by
spTWAS analysis were enriched, whereas an average of 34.7% of
genes (7.3/21 genes) associated with both TWAS and spTWAS were
mostly enriched in blood cell traits (Supplementary Table S6).
Next, we applied genetic correlation analysis to test whether
the PheWAS traits shared genetic contributions with IS at
a transcriptome- or proteome-wide level (see Methods). The
results show that the well-known risk factors for stroke, such
as “Diastolic blood pressure. automated reading (4079_irnt)”,
“Systolic blood pressure, automated reading (4080_irnt)”, “Non-
cancer illness code, self-reported: hypertension (20002_1065)”,
“Vascular/heart problems diagnosed by doctor: High blood
pressure (6150_4)”, and “Non-cancer illness code, self-reported:
high cholesterol (20002_1473)” [4, 39, 39], were significantly corre-
lated with IS in the physical measures and medical conditions
categories (FDR < 0.05) (Fig. 3 and Supplementary Table S7).
Notably, 5 reticulocyte traits, including “Reticulocyte count
(30250_irnt)”, “Reticulocyte percentage (30240_irnt)”, “High light
scatter reticulocyte percentage (30290_irnt)”, “High light scatter
reticulocyte count (30300_irnt), and “Immature reticulocyte
fraction (30280_irnt)”, were significantly positively correlated with
IS in TWAS and spTWAS levels in the blood cell traits (FDR < 0.05).
Reticulocytes are slightly immature red blood cells, and immature
reticulocyte fraction levels are associated with acute infection,
chronic renal insufficiency, and hematologic diseases [40]. Next,
we performed Mendelian randomization analysis to determine
the causal relationship between reticulocytes and IS. The MR
analysis is analysis with distinct genetic instruments associated
with five reticulocyte traits, in addition to genetic instruments
associated with IS, respectively. However, we found that there is
no causal relationship between IS risk and reticulocyte traits (P-
value < 0.01) (Supplementary Fig. S10). Previous studies showed
that high reticulocyte count or reticulocytosis are risk factors for
stroke in children with sickle cell disease [41–43]. Additionally, we
also used LD-score regression (LDSC) to measure shared genetic
contributions between traits at the genome-wide level. We found
significant correlations between IS and the reticulocyte traits
and the well-known risk factors. Collectively, our results show
that vascular traits and blood cell traits, especially reticulocyte
cells, have shared genetic contributions with IS.

TransPhar analysis identifies secondary bile
acids as potential drug candidates for IS
Next, we sought to find potential drug candidates for IS treatment
by evaluating an inverse expression relationship with compound-
induced gene expression profiles from a large-scale pharmaco-
logical database, L1000 CMap [20]. We computed the rank cor-
relations using Spearman’s rank correlation coefficient between
the top 10% TWAS genes (or the 134 TWAS/spTWAS/PWAS genes)
from each GTEx tissue (a total of 29 GTEx tissues) and each
CMAP expression level in the same group of tissues or cell types.
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Figure 2. The proportion of heritability mediated by gene expression levels. The bar plots correspond to the estimated expression MESC (h2
med/h2

g) in
each tissue panel in GTEx v8. Each error bar indicates jackknife standard errors.

The top 10% TWAS genes of each tissue contained an average
of about 22.26% of the TWAS/spTWAS/PWAS genes (mean 29.82
genes) among the 134 TWAS/spTWAS/PWAS genes or proteins
(Supplementary Fig. S11). We obtained 308 872 relationships from
all the tissue/cell type-compound pairs corresponding to each

correlation analysis, and the results from the top 10% TWAS
genes and the 134 TWAS/spTWAS/PWAS genes were significantly
correlated in each tissue (Supplementary Fig. S12). Finally, we
found two significant TWAS-compound linkages based on false
discovery rate (FDR) correction (Table 2, Supplementary Figs S13
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Table 1. Putative causal genes/splicing site/proteins from TWAS/spTWAS/PWAS (PIP > 0.8).

Type Panel Tissue Chr Symbol Exon/Intron
junctiona

FUSION
TWAS
P-value

FOCUS LD block FOCUS PIPb

Artery Brain

TWAS GTEx Esophagus Mucosa 4 PLRG1 – 4.69e−13 155 056 126–157 485 097 1 1
TWAS GTEx Pituitary 4 RP11-

380D23.1
– 3.84e−06 111 256 567–113 870 102 0.999 0.999

TWAS GTEx Cells Cultured
Fibroblasts

6 FOXF2 – 1.74e−07 73 924–1 452 362 0.995 0.995

TWAS GTEx Brain Cortex 9 CDKN2A – 8.17e−07 20 463 534–22 206 559 – 0.87
TWAS GTEx Artery Tibial 11 ANO1 – 4.50e−06 69 516 130–70 926 292 0.891 –
spTWAS GTEx Nerve Tibial 12 MAPKAPK5-

AS1
112 279 274–
112 279 488

8.10e−15 110 336 719–113 263 518 0.965 0.966

PWAS ARIC Plasma Protein 4 F11 – 1.82e−11 186 909 090–188 472 981 0.981 –
PWAS ARIC Plasma Protein 11 MMP12 – 7.81e−10 101 331 121–103 959 636 0.865 0.865
PWAS ARIC Plasma Protein 17 ENGASE – 1.55e−06 76 263 413–77 298 636 0.945 –

aAll genomic locations are GRCh37. bFOCUS PIP values are obtained by tissue prioritization using “Artery” or “Brain” tissue.

Figure 3. Genetic correlation between IS and UKBB phenotypes. Each point indicates a genetic correlation with TWAS/spTWAS/eTWAS/PWAS standard
errors. We use the following abbreviations ρTWAS, transcriptomic correlation analysis using TWAS; ρspTWAS, transcriptomic correlation analysis using
spTWAS; ρeTWAS, transcriptomic correlation analysis using eTWAS; ρPWAS, proteomic correlation analysis using PWAS; ρGWAS, genomic correlation
analysis using GWAS. The figure shows results indicating significance in at least one TWAS/spTWAS/eTWAS/PWAS analysis.

and S14). The two compounds were associated with brain tis-
sue; among them, the mechanism of action has been elucidated
for deoxycholic-acid (DCA). The DCA is classified as secondary
bile acids, which are produced by gut microbiota [44]. Previous
studies showed that other types of secondary bile acids, such
as Ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid
(TUDCA), have demonstrated neuroprotective effects in diverse
models of neurodegenerative disorders [45–49] as well as stroke
[50]. Notably, lower levels of total bile acid excretion is linked
to an increased risk of stroke and death [51]. The GIGASTROKE
consortium carried out the inverse relationship analysis between

TWAS gene and compound expression levels using GTEx v7 data,
but there were no significant results for IS [16]. In summary, our
results suggest that a negative correlation between the TWAS
genes and compound-induced gene expression levels provides the
potential drug candidates for IS.

Discussion
Stroke is the second leading cause of death worldwide, and the
main cause of stroke is ischemic stroke (IS) due to cerebral
infarction [2]. In this work, we identify 136 susceptibility genes,
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Table 2. Potential drug candidates for IS.

Tissue/cell-type
categories

GTEx panel
(tissue)

CMap L1000
cell line

CMap L1000
library (dose, h)

Mechanism of
action

rho (ρ) P-value FDR

Brain Brain - Frontal
Cortex BA9

Neural
progenitor cells
(NPC)

Deoxycholic-
acid (DCA)
(10 μM, 24 h)

Fat
emulsification

−0.301 8.00e−06 5.46e−02

BRD-K41878610
(10 μM, 24 h)

NA −0.293 1.32e−05 5.46e−02

Rho (ρ) represents Spearman’s rank correlation coefficient, and FDR represents the false discovery rate.

splicing sites, eRNA, and proteins spanning 60 genomic regions
based on multi-tissue TWAS/spTWAS/PWAS analysis. Among
them, 42 genomic regions were not discovered by the original
GWAS study. Consequently, we highlight 9 potential causal
genes/proteins using probabilistic fine-mapping analysis of the
TWAS results with a focus on the IS-relevant tissues, including
the aorta artery and brain estimated by a total fraction of disease
heritability mediated by gene expression levels. Moreover, we
discovered that blood cell traits, particularly reticulocyte cells,
have shared genetic contributions with IS. Lastly, we detected 2
potential therapeutic compounds for using inverse expression
profiles between TWAS results with compound-induced gene
expression profiles from a large-scale pharmacological database.

The genes underlying IS risk and their regulatory mechanisms
are still unknown, despite the fact that GWAS have effectively
identified numerous genomic regions related to IS, because
around 90% of the GWAS loci are located in non-coding regions
[7, 8]. However, the TWAS methodology has produced more
biologically interpretable results by integrating GWAS results
with mQTL data, such as eQTL, spQTL, EnQTL, and pQTL [9, 10,
19]. Consistent with the TWAS approach, the PhenomeXcan has
allowed us to identify the mediating role of gene expression in
complex traits and convert variant-phenotype associations into
gene-phenotype associations by providing biological hypotheses
[9, 52, 53]. In recent years, there has been increasing interest
in the combination of eQTL and sQTL data to gain a more
comprehensive understanding of gene regulation. However, the
GTEx project demonstrated that out of the 5385 significant GWAS
associations related to 87 complex traits, 43% of the GWAS loci
co-localized with cis-eQTL, whereas only 23% of the loci exhibited
co-localization with cis-sQTL [23]. Additionally, a previous study
revealed that nearly half (52%) of the identified sQTLs also
function as eQTLs for the corresponding gene and tissue [54].
These results suggest that the two regulatory mechanisms, eQTL
and sQTL, are not consistently interdependent, and the observed
low correlation (R = 0.33) between expression MESC with eQTLs
and splicing MESC with sQTLs using sQTLs is not unexpected
(Supplementary Figs S7 and S8). The expressed eRNAs have
become a hallmark of active enhancers [55]. The effects of
disease-associated genetic variants within the enhancer region
(i.e. EeQTLs) may offer valuable insights into the regulatory
mechanisms of complex diseases. It is important to observe that
EeQTLs play a significant role in mediating a considerable portion
of heritability associated with neuropsychiatric traits, such as
schizophrenia [19], in brain tissue. However, it is noteworthy that
the heritability of enhancers (EeQTLs) appears to be lower than
that of gene expression (eQTLs) in the CMC panel. The results
suggest that the statistical power for detecting associations in
eTWAS is considerably reduced in comparison to traditional
TWAS approaches. Furthermore, the overall heritability observed
in CMC is lower than that observed in the GTEx panel (Supplemen-
tary Fig. S15). Additionally, our current study exclusively focused

on conducting eTWAS analysis solely on brain tissues. We do note
that exploring the application of eTWAS on arterial tissues, which
are relevant to IS, would be an intriguing future study.

A notable finding was the significantly positive correlation
between IS risk and reticulocyte traits (Fig. 3). Reticulocytes are
slightly immature red blood cells, and higher reticulocyte counts
or percentages indicate higher hemolysis, which ultimately
results in an increase in the amount of cell-free hemoglobin
(CFH) in the blood [56]. The previous studies showed that the
hemolysis and the CFH increase inflammation [57] and mediate
vascular damage [58]. The findings suggested that a shared
causal mechanism influences the high level of reticulocytes with
hemolysis and the risk of IS.

After an initial ischemic stroke or transient ischemic attack
(TIA), a short episode with temporary blockage of blood flow to the
brain, the annual risk of future ischemic stroke is 3% to 5% [59].
The TIA does not leave an impairment, but affected individuals
are at increased risk of future ischemic events, especially in the
days and weeks immediately after symptoms resolve [60]. The
prompt initiation of a coordinated preventive strategy for IS is
essential [61].

Recent studies have reported that the probability of success
for clinical trials whose therapeutic targets are supported by
human genetic information is approximately twice the probability
of success for unsupported projects [62, 63]. Taking advantage
of the rapid growth of genomics fields, the utilization of human
genetics information for new therapeutics has been performed
in recent years [21, 22, 64, 65]. Importantly, 66% (33 out of 50) of
the FDA-approved new drugs were supported by human genetic
information in 2021 [66]. In addition to genetic data, recent gene
expression datasets have been leveraged for drug repositioning
[67, 68]. In particular, recent studies have investigated the utility
of TWAS in drug discovery or repositioning [21, 22]. One primary
advantage of the TWAS-based drug repositioning strategy, which
integrates large-scale GWAS together with gene expression data,
compared with datasets solely comprised of expression is a vastly
larger sample size. In general, the sample sizes of GWAS are many
orders of magnitude larger (e.g. tens to hundreds of thousands)
than those of gene expression datasets (e.g. tens to hundreds).
In addition, the TWAS approach enables identifying potential
therapeutic compounds that affect multiple tissues (e.g. heart,
brain) or cell type-specific contexts by leveraging independent
reference eQTL data. On the other hand, the expression data
related to the tissue of interest are not easily accessible for many
diseases, including IS.

Investigating the causal relationship between the identified
repositioning drugs and complex diseases using MR supports the
substantiation of the drug repositioning outcomes. Furthermore,
by acquiring GWAS data linked to secondary metabolites of the
drug candidates, which may directly reflect the actual efficacy
of the drug, we can also perform MR analysis to investigate
the connection between the secondary metabolites and complex
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diseases and traits. This approach is a promising avenue for future
research into potential therapeutic compounds.

To shed light on susceptibility genes and mechanisms for IS,
we used the recently published GWAS data from the GIGAS-
TROKE consortium. A TWAS analysis was also carried out by the
GIGASTROKE group, which discovered 17 genes using prediction
models based on GTEx v7 [16]. We found that 7/17 genes replicated
with in our TWAS investigation in the brain, artery, and heart
tissues with a strong correlation of TWAS effect-sizes (R = 0.73;
Supplementary Fig. S5). Additionally, we identified 119 genes/pro-
teins and demonstrated some strengths of our study. First, our
reference panels for TWAS analysis were significantly larger than
the GIGASTROKE study by leveraging GTEx v8 datasets [23], which
allowed for more robust analysis and generalization of the find-
ings. Second, our study used a diverse and extensive TWAS anal-
ysis, which included a multi-tissue mRNA/splicing/eRNA/protein
transcriptome-wide association study (TWAS/spTWAS/eTWAS/P-
WAS). This diversity provides a broader range of biological mech-
anisms to understand IS etiology.

We note several limitations with our approach. First, our
approach relies on using genetically predicted gene expression
levels to identify genes whose expression associates with the
genetic component of IS risk, which will require further functional
studies for downstream validation. We note however, that our
results were robust to choose TWAS approach (i.e. FUSION vs
PrediXcan), statistical method (i.e. TWAS vs coloc), and eQTL
reference panel (i.e. GTEx v7 vs GTEx v8). Second, we investigated
the association between IS risk with diverse molecular contexts
focusing on genetically predicted gene expression, protein
abundance, splicing variation, and enhancer expression across
multiple tissues when available. However, recent works have
demonstrated improved association and colocalization power
when investigating transcription factor binding, chromatin
activity, and chromatin accessibility information [69, 70], which
may be potential mediators for IS risk, missed by our work. Despite
these limitations, our results provide valuable insights into
underlying molecular mechanisms and drug candidates for IS.

In conclusion, we highlight IS risk genes and proteins using
the multi-tissue TWAS/spTWAS/eTWAS/PWAS approach. More-
over, we provided potential drug candidates for preventing IS. We
believe that these findings could be used as valuable resources
for understanding the underlying mechanisms and designing
subsequent functional studies for IS treatment.

Materials and methods
Ischemic stroke GWAS summary statistics
IS GWAS summary statistics from GIGASTROKE consortium
[16] were downloaded from the GWAS Catalog (GCST90104540)
(https://www.ebi.ac.uk/gwas/studies/GCST90104540). We restricted
summary statistics data to ischemic stroke (AIS) results from
1 296 908 individuals of predominantly European ancestry (62 100
cases and 1 234 808 controls). Next, we filtered summary statistics
data to exclude SNPs with minor allele frequency (MAF) < 0.01 or
any SNPs with strand-ambiguous variants (i.e. A/T or C/G; or
vice-versa) using the focus munge tool [33], resulting in 6 335 571
bi-allelic SNPs for downstream analyses.

Reference functional data for predictive models
of eQTL/spQTL/EeQLT/pQTL
To perform TWAS and spTWAS, we generated predictive models
of gene and splicing expression using individuals from the
Genotype-Tissue Expression Project (GTEx) v8 [23] using a

modified FUSION script (https://github.com/gusevlab/fusion_
twas). We downloaded genotype, phenotype, and covariate
information from European-American subjects in the GTEx v8
study (48 tissues; N = 588). We defined the cis-mapping window
as ±500 kb around the transcription start site (TSS) after filtering
based on minor allele frequency (MAF) < 0.005, Hardy-Weinberg
Equilibrium (HWE) < 1 × 10−5. We included the reference set
of covariates from the GTEx v8 eQTL/spQTL analyses, which
included first five genotype principal components (PCs), 15 hidden
covariate derived from Probabilistic Estimation of Expression
Residuals (PEER) [71] factors, whole genome sequencing (WGS)
platform (HiSeq 2000 or HiSeq X), WGS library preparation proto-
col (PCR-based or PCR-free), and donor gender. We estimated cis-
SNP heritability (cis-h2

g) of each model using REML as implemented
in Genome-wide Complex Trait Analysis (GCTA) [72]. We focused
on genes and splicing sites with nominally significant estimates
of cis-h2

g (P-value < 0.01), which resulted in 293 295 total tissue-
gene pairs from 27 549 unique genes and 371 441 total splicing
sites from 16 871 unique genes. To train and generate predictive
models, we fitted LASSO [73], Elastic Net [74], and the Sum of
Single Effects model (SuSiE) [75]. The best performing model
for each gene/tissue (splice-site/tissue) context was selected by
calculating cross-validation prediction accuracy, as implemented
in the FUSION pipeline. The GTEx v8 weights were publicly
available (http://gusevlab.org/projects/fusion/).

To perform enhancer TWAS analysis (eTWAS), we downloaded
precalculated FUSION weights for enhancer eQTL (EeQTL) data
from two brain tissues, the dorsolateral prefrontal cortex (DLPFC)
(N = 486) and the anterior cingulate cortex (ACC) (N = 402), in
CommonMind Consortium (CMC) [19]. Briefly, the LASSO [73],
Elastic Net [74] were used to train and generate the eTWAS
predictive models for the ACC (4907 predictive models) and DLPFC
(5715 predictive models). In addition, we also downloaded fitted
prediction models of gene expression in both ACC (8021 predictive
models) and DLPFC (8946 predictive models) tissues. For detailed
information of the eTWAS and TWAS predicted models, see the
previously described ref [19].

To perform a proteome-wide association study (PWAS), we
downloaded fitted prediction models of protein abundance
trained using individuals from the INTERVAL (N = 3301) [24]
(https://www.mancusolab.com/pwas) and Atherosclerosis Risk in
Communities (ARIC) [76] (http://nilanjanchatterjeelab.org/pwas/)
cohorts. In the ARIC cohort, we focused only on the European
ancestry dataset (N = 7213). Briefly, to train and generate the
PWAS predictive models using FUSION script, the LASSO [73],
Elastic Net [74], and SuSiE [75] were used for the INTERVAL (994
predictive models) and the Elastic Net [74] was used for the ARIC
(1305 predictive models). For detailed information of the PWAS
predicted models, see the previously described INTERVAL [77] and
the ARIC [25].

Transcriptome-wide association study analyses
We performed TWAS, spTWAS, eTWAS, or PWAS analyses using
FUSION [9] with the trained GTExv8 [23], CMC [19], or INTERVAL
[77] and ARIC [25] models, respectively. European LD reference
data from the 1000G project [78] was used for TWAS analysis.
We excluded TWAS associations from human leukocyte antigen
(HLA) regions due to the complex LD patterns. The significance
threshold of TWAS associations was determined using a per-
tissue Bonferroni correction (Avg num tests = 6770; Supplemen-
tary Table S8). We then carried out an adaptive permutation
test using TWAS test statistics for each tissue panel. For this
analysis, 106 maximum number of permutations was used, and
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the significance threshold was corrected with per-tissue Bonfer-
roni correction. The results of full summary statistics for TWAS,
spTWAS, eTWAS, and PWAS were publicly available on GitHub
(https://github.com/mancusolab/stroke_twas).

To provide partial support for findings from our FUSION TWAS
analyses, we leveraged S-PrediXcan [27] with pre-trained Multi-
variate Adaptive Shrinkage in R (MASHR)-based models of Pre-
dictDB [52, 79]. In GTEx v8, we tested 648 028 and 1 681 295 models
of expression and splicing site, respectively.

Colocalization analysis
We performed colocalization analysis to test whether the same
causal variants were shared between stroke GWAS and gene/pro-
tein expression levels. We used coloc r package [75] together with
stroke GWAS summary statistics and marginal molecular QTL
(molQTL) results from FUSION prediction models. Consequently,
the cis-mapping window, which spans ±500 kb around the TSS,
and the filtering criteria employed in this analysis were consistent
with those employed in the TWAS analysis. The evidence of colo-
calization was defined as PP3 + PP4 ≥ 0.8 and PP4/PP3 ≥ 2 where
posterior probability (PP) was obtained from hypothesis H3 and
H4. H3 is the PP of GWAS and eQTL signals are associated with
different causal variants, and H4 is the PP of GWAS and eQTL
signals are associated and share a single causal variant.

Mediated expression score regression analyses
To identify tissues relevant for IS risk, we used Mediated Expres-
sion Score Regression (MESC) to estimate the proportion of her-

itability mediated by assayed gene expression levels
(
h2

med/h2
g

)

[28]. For MESC expression scores, the eQTL effect sizes using the
SuSiE model [75] and expression cis-heritability using REML were
imported from FUSION GTEx v8 weights. Only SNPs from the
HapMap3 [80] were kept for this research.

Fine-mapping of TWAS associations
To differentiate between causal and tagging associations at TWAS
risk regions, we performed probabilistic fine-mapping of TWAS
results to prioritize genes using the tool FOCUS [33]. We generated
an eQTL/spQTL/pQTL weight database for FOCUS by importing
our trained GTEx v8 weights from FUSION. To determine approx-
imately independent genomic regions, we used LD block archi-
tecture GRCh19 provided by Berisa and Pickrell [26]. The putative
causal genes were defined as PIP ≥ 0.8.

Phenome-wide association studies and genetic
correlation analyses
To understand the phenotypic consequences of identified
TWAS/spTWAS/PWAS associations, we performed a phenome-
wide association study (pheWAS) for each identified gene
using PhenomeXcan [37]. Using the TWAS/spTWAS/PWAS genes,
phenotypes from the results of pheWAS analysis were reported
based on transcriptome-wide significance (P-value < 2.25 × 10–6).
In addition, the PheWAS result was filtered by traits involving at
least five TWAS genes.

To determine the genetic relationship between IS and the phe-
notypes identified from PhenomeXcan, we performed genome-
wide genetic correlation analyses using RHOGE [81] with publicly
available GWAS summary statistics from the UK Biobank (http://
www.nealelab.is/uk-biobank). First, TWAS/spTWAS/PWAS analy-
ses were performed using the same FUSION pipeline in the IS
analysis. Next, we estimated the genome-wide genetic correlation
between the IS and the PhenomeXcan traits derived from TWAS

analysis using LD block architecture GRCh38 (https://github.com/
jmacdon/LDblocks_GRCh38) MacDonald et al. [82]. In addition, we
performed SNP-based genetic correlation analysis using LD Score
Regression (LDSC) [83] with the GWAS summary statistics data.

Mendelian randomization analysis
To assess causal effects of reticulocyte traits on IS risk, we
performed Mendelian Randomization (MR) analysis. To extract
instruments for use in MR from the 5 reticulocyte traits including
“Reticulocyte percentage (ukb-d-30240_irnt)”, “Reticulocyte count
(ukb-d-30250_irnt)”, “Immature reticulocyte fraction (ukb-d-
30280_irnt)”, “High light scatter reticulocyte percentage (ukb-
d-30290_irnt)", and “High light scatter reticulocyte count (ukb-
d-30300_irnt)”, We utilized the IEU GWAS database (https://
gwas.mrcieu.ac.uk/), which provides a vast collection of curated,
quality-controlled, and standardized GWAS summary datasets.
This resource enables the identification of independent instru-
ments and can be accessed through an API. Next, we employed
the clump_data command in the TwoSampleMR R package to
identify an independent set of variants as genetic instruments
using genome-wide significance (P-value < 5 × 10−8) SNPs with
LD-pruned (distance threshold = 10 000 kb, r2 = 0.001) [84]. In
addition, For the reverse relationship between reticulocyte traits
and IS risk, the fine-mapping results of GIGASTROKE [16] were
used as instruments. After harmonizing the effect of a SNP on
the between IS and reticulocyte traits to the same allele, the
MR analysis was conducted using 5 MR method (“MR Egger”,
“Weighted median”, “Inverse variance weighted”, “Simple mode”,
and “Weighted mode”) [85].

Drug repositioning analysis
To identify potential drug candidates for IS, we used Trans-Phar
[21] by comparing the inverse expression profiles between genet-
ically regulated gene expression from TWAS with compound-
induced gene expression profiles from a large-scale pharma-
cological database. Briefly, we obtained differentially expressed
genes (DEGs) data from ref. [21] for each compound-induced gene
expression data and used 13 tissue/cell-type categories assigned
for 29 GTEx tissues and 77 L1000 Connectivity Map (CMap) cell
types. Then, we computed the rank correlations using Spearman’s
rank correlation coefficient between the top 10% TWAS genes
from each GTEx tissue and each CMAP expression level in the
same group of tissues or cell types. In addition, we also calcu-
lated the Spearman’s rank correlation coefficient using the 134
TWAS/spTWAS/PWAS genes. Finally, a total of 308 872 P-values
were collected for each correlation analysis. The significance
threshold of the inverse correlation analysis was determined
using a per-tissue or/and per-cell type Bonferroni correction (Sup-
plementary Table S9).

Supplementary data
Supplementary data is available at HMG Journal online.
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